Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(6): 1140-1164, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38776926

ABSTRACT

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Subject(s)
Chromosome Inversion , Rare Diseases , Humans , Rare Diseases/genetics , Male , Female , Chromosome Inversion/genetics , Pedigree , Genome, Human , Whole Genome Sequencing , Methyl-CpG-Binding Protein 2/genetics , Mutation , Homeodomain Proteins/genetics , Middle Aged
2.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38478578

ABSTRACT

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Subject(s)
Leigh Disease , Optic Atrophy, Hereditary, Leber , Humans , Leigh Disease/genetics , Optic Atrophy, Hereditary, Leber/genetics , Male , Female , Adult , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Child , Adolescent , NADH Dehydrogenase/genetics , Mutation , Young Adult , Exome Sequencing , Child, Preschool
3.
Am J Hum Genet ; 103(4): 592-601, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245030

ABSTRACT

Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.


Subject(s)
Electron Transport Complex I/deficiency , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Alleles , Amino Acid Sequence , Electron Transport Complex I/genetics , Female , Fibroblasts/pathology , Genetic Heterogeneity , Humans , Infant , Male , Mitochondria/genetics , Phenotype , Sequence Alignment
4.
Genet Med ; 22(1): 199-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31462754

ABSTRACT

PURPOSE: Mitochondrial DNA (mtDNA) depletion syndrome (MDDS) encompasses a group of genetic disorders of mtDNA maintenance. Mutation of RRM2B is an uncommon cause of infantile-onset encephalomyopathic MDDS. Here we describe the natural history of this disease. METHODS: Multinational series of new genetically confirmed cases from six pediatric centers. RESULTS: Nine new cases of infantile-onset RRM2B deficiency, and 22 previously published cases comprised a total cohort of 31 patients. Infants presented at a mean of 1.95 months with truncal hypotonia, generalized weakness, and faltering growth. Seizures evolved in 39% at a mean of 3.1 months. Non-neurological manifestations included respiratory distress/failure (58%), renal tubulopathy (55%), sensorineural hearing loss (36%), gastrointestinal disturbance (32%), eye abnormalities (13%), and anemia (13%). Laboratory features included elevated lactate (blood, cerebrospinal fluid (CSF), urine, magnetic resonance (MR), spectroscopy), ragged-red and cytochrome c oxidase-deficient fibers, lipid myopathy, and multiple oxidative phosphorylation enzyme deficiencies in skeletal muscle. Eight new RRM2B variants were identified. Patients with biallelic truncating variants had the worst survival. Overall survival was 29% at 6 months and 16% at 1 year. CONCLUSIONS: Infantile-onset MDDS due to RRM2B deficiency is a severe disorder with characteristic clinical features and extremely poor prognosis. Presently management is supportive as there is no effective treatment. Novel treatments are urgently needed.


Subject(s)
Cell Cycle Proteins/genetics , Intestinal Pseudo-Obstruction/genetics , Muscular Dystrophy, Oculopharyngeal/genetics , Mutation, Missense , Ribonucleotide Reductases/genetics , Cell Cycle Proteins/chemistry , Female , Humans , Infant , Infant, Newborn , Intestinal Pseudo-Obstruction/mortality , Male , Models, Molecular , Muscular Dystrophy, Oculopharyngeal/mortality , Ophthalmoplegia/congenital , Prognosis , Protein Conformation , Ribonucleotide Reductases/chemistry , Survival Analysis
5.
Ann Neurol ; 86(2): 310-315, 2019 08.
Article in English | MEDLINE | ID: mdl-31187502

ABSTRACT

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.


Subject(s)
Genetic Variation/genetics , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnosis , United Kingdom/epidemiology , Young Adult
6.
J Med Genet ; 56(3): 123-130, 2019 03.
Article in English | MEDLINE | ID: mdl-30683676

ABSTRACT

Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Biomarkers , Genetic Testing , Humans , Phenotype
7.
Genet Med ; 21(4): 1027, 2019 04.
Article in English | MEDLINE | ID: mdl-30228318

ABSTRACT

Since the online publication of the article, the authors have noted errors with Table 2; this has now been corrected in both the HTML and the PDF.

8.
J Med Genet ; 55(8): 515-521, 2018 08.
Article in English | MEDLINE | ID: mdl-29602790

ABSTRACT

BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Proteins/deficiency , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Thymidine Kinase/deficiency , Adolescent , Adult , Age of Onset , Aged , Child , Child, Preschool , Female , Genes, Recessive , Genetic Testing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Diseases/mortality , Mutation , Phenotype , Retrospective Studies , Survival Analysis , Young Adult
9.
Mol Pharmacol ; 94(5): 1256-1269, 2018 11.
Article in English | MEDLINE | ID: mdl-30135145

ABSTRACT

Neuropathic pain in patients carrying sodium channel gain-of-function mutations is generally refractory to pharmacotherapy. However, we have shown that pretreatment of cells with clinically achievable concentration of carbamazepine (CBZ; 30 µM) depolarizes the voltage dependence of activation in some NaV1.7 mutations such as S241T, a novel CBZ mode of action of this drug. CBZ reduces the excitability of dorsal root ganglion (DRG) neurons expressing NaV1.7-S241T mutant channels, and individuals carrying the S241T mutation respond to treatment with CBZ. Whether the novel activation-modulating activity of CBZ is specific to NaV1.7, and whether this pharmacogenomic approach can be extended to other sodium channel subtypes, are not known. We report here the novel NaV1.8-S242T mutation, which corresponds to the NaV1.7-S241T mutation, in a patient with neuropathic pain and diabetic peripheral neuropathy. Voltage-clamp recordings demonstrated hyperpolarized and accelerated activation of NaV1.8-S242T. Current-clamp recordings showed that NaV1.8-S242T channels render DRG neurons hyperexcitable. Structural modeling shows that despite a substantial difference in the primary amino acid sequence of NaV1.7 and NaV1.8, the S242 (NaV1.8) and S241 (NaV1.7) residues have similar position and orientation in the domain I S4-S5 linker of the channel. Pretreatment with a clinically achievable concentration of CBZ corrected the voltage dependence of activation of NaV1.8-S242T channels and reduced DRG neuron excitability as predicted from our pharmacogenomic model. These findings extend the novel activation modulation mode of action of CBZ to a second sodium channel subtype, NaV1.8.


Subject(s)
Carbamazepine/pharmacology , Diabetic Neuropathies/genetics , Mutation , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/genetics , Pain/complications , Aged , Animals , Diabetic Neuropathies/complications , Diabetic Neuropathies/physiopathology , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Humans , Male , Membrane Potentials , Mice , Pain/physiopathology , Pain Measurement , Patch-Clamp Techniques
10.
Genet Med ; 19(11): 1217-1225, 2017 11.
Article in English | MEDLINE | ID: mdl-28471437

ABSTRACT

PurposeMutations in POLG, the most common single-gene cause of inherited mitochondrial disease, are diagnostically challenging owing to clinical heterogeneity and overlap between syndromes. We aimed to improve the clinical recognition of POLG-related disorders in the pediatric population.MethodsWe performed a multinational, phenotype: genotype study using patients from three centers, two Norwegian and one from the United Kingdom. Patients with age at onset <12 years and confirmed pathogenic biallelic POLG mutations were considered eligible.ResultsA total of 27 patients were identified with a median age at onset of 11 months (range 0.6-80.4). The majority presented with global developmental delay (n=24/24, 100%), hypotonia (n=22/23, 96%) and faltering growth (n=24/27, 89%). Epilepsy was common, but notably absent in patients with the myocerebrohepatopathy spectrum phenotype. We identified two novel POLG gene mutations.ConclusionOur data suggest that POLG-related disease should be suspected in any child presenting with diffuse neurological symptoms. Full POLG sequencing is recommended since targeted screening may miss mutations. Finally, we simplify the classification of POLG-related disease in children using epilepsy as the crucial defining element; we show that Alpers and myocerebrohepatopathy spectrum follow different outcomes and that they manifest different degrees of respiratory chain dysfunction.


Subject(s)
DNA Polymerase gamma/genetics , Mitochondrial Diseases/genetics , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Genotype , Humans , Infant , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Muscle, Skeletal/pathology , Mutation , Phenotype , Retrospective Studies
11.
J Pediatr Gastroenterol Nutr ; 63(6): 592-597, 2016 12.
Article in English | MEDLINE | ID: mdl-27482763

ABSTRACT

BACKGROUND: Mitochondrial liver disease (MLD), and in particular mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an important cause of acute liver failure (ALF) in infancy. Early and accurate diagnosis is important because liver transplantation (LT) is often contraindicated. It is unclear which methods are the best to diagnose MLD in the setting of ALF. OBJECTIVE: The aim of the study was to determine the incidence of MLD in children younger than 2 years with ALF and the utility of routine investigations to detect MLD. METHODS: Thirty-nine consecutive infants with ALF were admitted to a single unit from 2009 to 2011. All were extensively investigated using an established protocol. Genes implicated in mitochondrial DNA depletion syndrome were sequenced in all cases and tissue mtDNA copy number measured where available. RESULTS: Five infants (17%) had genetically proven MLD: DGUOK (n = 2), POLG (n = 2), and MPV17 (1). Four of these died, whereas 1 recovered. Two had normal muscle mtDNA copy number and 3 had normal muscle respiratory chain enzymes. An additional 8 children had low hepatic mtDNA copy number but pathogenic mutations were not detected. One of these developed fatal multisystemic disease after LT, whereas 5 who survived remain well without evidence of multisystemic disease up to 6 years later. Magnetic resonance spectroscopy did not distinguish between those with and without MLD. CONCLUSIONS: Low liver mtDNA copy number may be a secondary phenomenon in ALF.Screening for mtDNA maintenance gene mutations may be the most efficient way to confirm MLD in ALF in the first 2 years of life.


Subject(s)
DNA, Mitochondrial/genetics , Liver Failure, Acute/etiology , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Female , Humans , Infant , Infant, Newborn , Intestinal Pseudo-Obstruction , Liver/diagnostic imaging , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/diagnosis , Mitochondrial Encephalomyopathies , Muscular Dystrophy, Oculopharyngeal , Mutation , Ophthalmoplegia/congenital
12.
Pharmacol Res ; 100: 24-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26196248

ABSTRACT

Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses.


Subject(s)
Autophagy/physiology , Biological Assay/methods , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Autophagy/drug effects , DNA, Mitochondrial/drug effects , Humans , Metformin/pharmacology , Microscopy, Fluorescence/methods , Middle Aged , Mitochondria/drug effects , Mitophagy/drug effects , Mitophagy/physiology , Young Adult
13.
J Inherit Metab Dis ; 38(3): 445-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25352051

ABSTRACT

BACKGROUND: Single large-scale mitochondrial DNA (mtDNA) deletions (SLSMDs) are amongst the most frequently diagnosed mtDNA disorders in childhood, yet their natural history remains poorly understood. We report the natural history of a large multicentre cohort of such children. METHODS: We reviewed case notes from three different UK centres to determine the clinical course of 34 patients (16 female, 18 male) with childhood-onset mitochondrial disease caused by SLSMDs. Kaplan-Meier analysis was used to compare survival of patients presenting with haematological features (Pearson syndrome) and those with nonhaematological presentations. RESULTS: The most frequent initial presentation was with isolated ptosis (16/34, 47%). Eleven (32%) patients presented with transfusion-dependent anaemia soon after birth and were diagnosed with Pearson syndrome, whilst ten were classified as having Kearns-Sayre syndrome, three as having progressive external ophthalmoplegia (PEO) and seven as having PEO-plus. Three patients did not conform to any specific mitochondrial syndrome. The most frequently affected organ during the disease course was the kidney, with documented tubular or glomerular dysfunction in 17 of 20 (85%) cases who had detailed investigations. SLSMDs were present in blood and/or urine cells in all cases tested, indicating that muscle biopsy is not necessary for diagnosis in the paediatric age range. Kaplan-Meier survival analysis revealed significantly worse mortality in patients with Pearson syndrome compared with the rest of the cohort. CONCLUSIONS: Mitochondrial disease caused by SLSMDs is clinically heterogeneous, and not all cases conform to a classical mitochondrial syndrome. Multisystem disease is the norm, with anaemia, renal impairment and endocrine disturbance being the most frequent extraneurological features. SLSMDs should be considered in the differential diagnosis of all children presenting with ptosis.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Blepharoptosis/genetics , DNA, Mitochondrial/genetics , Kearns-Sayre Syndrome/genetics , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Sequence Deletion/genetics , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Congenital Bone Marrow Failure Syndromes , Female , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Young Adult
14.
Brain ; 137(Pt 12): 3200-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25281868

ABSTRACT

Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Predisposition to Disease , Mitochondria/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Peripheral Nervous System Diseases/genetics , Adolescent , Adult , Female , Genotype , Humans , Male , Middle Aged , Mutation/genetics , Young Adult
15.
Hum Mol Genet ; 21(12): 2768-78, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22422767

ABSTRACT

The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that has an extracellular bilobed venus flytrap domain (VFTD) predicted to contain five calcium (Ca(2+))-binding sites. To elucidate the structure-function relationships of the VFTD, we investigated 294 unrelated probands with familial hypocalciuric hypercalcaemia (FHH), neonatal severe primary hyperparathyroidism (NSHPT) or autosomal dominant hypocalcaemic hypercalciuria (ADHH) for CaSR mutations and performed in vitro functional expression studies and three-dimensional modelling of mutations involving the VFTD. A total of 70 different CaSR mutations were identified: 35 in FHH, 10 in NSHPT and 25 in ADHH patients. Furthermore, a CaSR variant (Glu250Lys) was identified in FHH and ADHH probands and demonstrated to represent a functionally neutral polymorphism. NSHPT was associated with a large proportion of truncating CaSR mutations that occurred in the homozygous or compound heterozygous state. Thirty-four VFTD missense mutations were identified, and 18 mutations were located within 10 Å of one or more of the predicted Ca(2+)-binding sites, particularly at the VFTD cleft, which is the principal site of Ca(2+) binding. Mutations of residues 173 and 221, which are located at the entrance to the VFTD cleft binding site, were associated with both receptor activation (Leu173Phe and Pro221Leu) and inactivation (Leu173Pro and Pro221Gln), thereby highlighting the importance of these residues for entry and binding of Ca(2+) by the CaSR. Thus, these studies of disease-associated CaSR mutations have further elucidated the role of the VFTD cleft region in Ca(2+) binding and the function of the CaSR.


Subject(s)
Hypercalcemia/genetics , Hypocalcemia/genetics , Mutation , Receptors, Calcium-Sensing/genetics , Binding Sites/genetics , Calcium/chemistry , Calcium/metabolism , Genotype , HEK293 Cells , Humans , Hyperparathyroidism , Infant, Newborn , Models, Molecular , Mutation Rate , Mutation, Missense , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Calcium-Sensing/chemistry , Receptors, Calcium-Sensing/metabolism
16.
Front Cell Dev Biol ; 12: 1260496, 2024.
Article in English | MEDLINE | ID: mdl-38665433

ABSTRACT

Introduction: In mitochondrial DNA (mtDNA) depletion syndrome (MDS), patients cannot maintain sufficient mtDNA for their energy needs. MDS presentations range from infantile encephalopathy with hepatopathy (Alpers syndrome) to adult chronic progressive external ophthalmoplegia. Most are caused by nucleotide imbalance or by defects in the mtDNA replisome. There is currently no curative treatment available. Nucleoside therapy is a promising experimental treatment for TK2 deficiency, where patients are supplemented with exogenous deoxypyrimidines. We aimed to explore the benefits of nucleoside supplementation in POLG and TWNK deficient fibroblasts. Methods: We used high-content fluorescence microscopy with software-based image analysis to assay mtDNA content and membrane potential quantitatively, using vital dyes PicoGreen and MitoTracker Red CMXRos respectively. We tested the effect of 15 combinations (A, T, G, C, AT, AC, AG, CT, CG, GT, ATC, ATG, AGC, TGC, ATGC) of deoxynucleoside supplements on mtDNA content of fibroblasts derived from four patients with MDS (POLG1, POLG2, DGUOK, TWNK) in both a replicating (10% dialysed FCS) and quiescent (0.1% dialysed FCS) state. We used qPCR to measure mtDNA content of supplemented and non-supplemented fibroblasts following mtDNA depletion using 20 µM ddC and after 14- and 21-day recovery in a quiescent state. Results: Nucleoside treatments at 200 µM that significantly increased mtDNA content also significantly reduced the number of cells remaining in culture after 7 days of treatment, as well as mitochondrial membrane potential. These toxic effects were abolished by reducing the concentration of nucleosides to 50 µM. In POLG1 and TWNK cells the combination of ATGC treatment increased mtDNA content the most after 7 days in non-replicating cells. ATGC nucleoside combination significantly increased the rate of mtDNA recovery in quiescent POLG1 cells following mtDNA depletion by ddC. Conclusion: High-content imaging enabled us to link mtDNA copy number with key read-outs linked to patient wellbeing. Elevated G increased mtDNA copy number but severely impaired fibroblast growth, potentially by inhibiting purine synthesis and/or causing replication stress. Combinations of nucleosides ATGC, T, or TC, benefited growth of cells harbouring POLG mutations. These combinations, one of which reflects a commercially available preparation, could be explored further for treatment of POLG patients.

17.
J Thromb Haemost ; 22(8): 2281-2293, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38492852

ABSTRACT

BACKGROUND: Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES: Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS: A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS: We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION: We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.


Subject(s)
Anoctamins , Blood Coagulation Disorders , Frameshift Mutation , Hemorrhage , Thrombin , Adult , Female , Humans , Male , Anoctamins/genetics , Blood Coagulation/genetics , Blood Coagulation Disorders/genetics , Blood Platelets/metabolism , Consanguinity , Genetic Predisposition to Disease , Hemorrhage/genetics , Hemorrhage/blood , Homozygote , Pedigree , Phenotype , Phosphatidylserines , Phospholipid Transfer Proteins , Platelet Aggregation , Platelet Function Tests , Thrombin/metabolism
18.
J Neurol Neurosurg Psychiatry ; 84(1): 107-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22933815

ABSTRACT

BACKGROUND: The myopathy associated with mutations in the nuclear-encoded mitochondrial DNA maintenance gene POLG, coding for the catalytic subunit of DNA polymerase, is typically proximal with early ophthalmoplegia. RESULTS: We report two unrelated patients in whom a distal, mainly upper limb, myopathy was the predominant and early clinical feature. One patient also suffered with marked cachexia. DNA genomic sequence analysis identified novel dominant heterozygous missense POLG mutations (Leu896Arg and Tyr951His) located within the conserved catalytic polymerase domain of the protein in both cases. CONCLUSIONS: Distal upper limb myopathy/cachexia is not previously described with dominant POLG mutations and our observations further highlight the diverse clinical spectrum of POLG-related mitochondrial disorders. These data indicate that dominant POLG mutations should be considered in the differential diagnosis of distal upper limb predominant myopathy.


Subject(s)
Cachexia/genetics , DNA, Mitochondrial/genetics , DNA-Directed DNA Polymerase/genetics , Distal Myopathies/genetics , Mutation, Missense/genetics , Adult , Cachexia/complications , DNA Polymerase gamma , Distal Myopathies/complications , Humans , Male , Middle Aged , Phenotype , Sequence Analysis, DNA
19.
Epilepsia ; 54(6): 1002-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23448099

ABSTRACT

PURPOSE: To assess the frequency and clinical features of childhood-onset intractable epilepsy caused by the most common mutations in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma. METHODS: Children presenting with nonsyndromic intractable epilepsy of unknown etiology but without documented liver dysfunction at presentation were eligible for this prospective, population-based study. Blood samples were analyzed for the three most common POLG mutations. If any of the three tested mutations were found, all the exons and the exon-intron boundaries of the POLG gene were sequenced. In addition, we retrospectively reviewed the notes of patients presenting with intractable epilepsy in which we had found POLG mutations. All available clinical data were collected by questionnaire and by reviewing the medical records. KEY FINDINGS: We analyzed 213 blood DNA samples from patients fulfilling the inclusion criteria of the prospective study. Among these, five patients (2.3%) were found with one of the three common POLG mutations as homozygous or compound heterozygous states. In addition, three patients were retrospectively identified. Seven of the eight patients had either raised cerebrospinal fluid (CSF) lactate (n = 3) or brain magnetic resonance imaging (MRI) changes (n = 4) at presentation with intractable epilepsy. Three patients later developed liver dysfunction, progressing to fatal liver failure in two without previous treatment with sodium valproate (VPA). Furthermore, it is worth mentioning that one patient presented first with an autism spectrum disorder before seizures emerged. SIGNIFICANCE: Mutations in POLG are an important cause of early and juvenile onset nonsyndromic intractable epilepsy with highly variable associated manifestations including autistic features. This study emphasizes that genetic testing for POLG mutations in patients with nonsyndromic intractable epilepsies is very important for clinical diagnostics, genetic counseling, and treatment decisions because of the increased risk for VPA-induced liver failure in patients with POLG mutations. We recommend POLG gene testing for patients with intractable seizures and at least one elevated CSF lactate or suggestive brain MRI changes (predominantly abnormal T2 -weighted thalamic signal) with or without status epilepticus, epilepsia partialis continua, or liver manifestations typical for Alpers disease, especially when the disease course is progressive.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Epilepsy/genetics , Mutation/genetics , Adolescent , Brain/pathology , Child , Child, Preschool , DNA Polymerase gamma , Epilepsy/pathology , Heterozygote , Homozygote , Humans , Infant , Magnetic Resonance Imaging , Neuroimaging , Prevalence , Prospective Studies
20.
Brain ; 135(Pt 11): 3392-403, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23107649

ABSTRACT

Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase) mutations. However, the clinico-pathological and molecular features of adults with RRM2B-related disease have not been clearly defined. In this multicentre study of 26 adult patients from 22 independent families, including five additional cases published in the literature, we show that extra-ocular neurological complications are common in adults with genetically confirmed RRM2B mutations. We also demonstrate a clear correlation between the clinical phenotype and the underlying genetic defect. Myopathy was a prominent manifestation, followed by bulbar dysfunction and fatigue. Sensorineural hearing loss and gastrointestinal disturbance were also important findings. Severe multisystem neurological disease was associated with recessively inherited compound heterozygous mutations with a mean age of disease onset at 7 years. Dominantly inherited heterozygous mutations were associated with a milder predominantly myopathic phenotype with a later mean age of disease onset at 46 years. Skeletal muscle biopsies revealed subsarcolemmal accumulation of mitochondria and/or cytochrome c oxidase-deficient fibres. Multiple mitochondrial DNA deletions were universally present in patients who underwent a muscle biopsy. We identified 18 different heterozygous RRM2B mutations within our cohort of patients, including five novel mutations that have not previously been reported. Despite marked clinical overlap between the mitochondrial maintenance genes, key clinical features such as bulbar dysfunction, hearing loss and gastrointestinal disturbance should help prioritize genetic testing towards RRM2B analysis, and sequencing of the gene may preclude performance of a muscle biopsy.


Subject(s)
Cell Cycle Proteins/genetics , Gene Deletion , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Neuromuscular Diseases/genetics , Ribonucleotide Reductases/genetics , Adult , Aged , Aged, 80 and over , Brain Diseases/complications , Brain Diseases/genetics , Cohort Studies , Heterozygote , Humans , Middle Aged , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/pathology , Models, Genetic , Muscle, Skeletal/pathology , Mutation, Missense/genetics , Neuromuscular Diseases/complications , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL