Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
Cell ; 175(1): 85-100.e23, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173916

ABSTRACT

Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as "autoproliferation" of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies.


Subject(s)
B-Lymphocytes/pathology , HLA-DR Serological Subtypes/immunology , Multiple Sclerosis/immunology , Autoantigens/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/physiopathology , B-Lymphocytes/metabolism , Brain/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Guanine Nucleotide Exchange Factors/metabolism , HLA-DR Serological Subtypes/genetics , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Receptors, Antigen, T-Cell , Th1 Cells/physiology
3.
Molecules ; 29(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474491

ABSTRACT

Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas-vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%-but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Spectrum Analysis, Raman/methods , Machine Learning , Algorithms
4.
Clin Immunol ; 257: 109845, 2023 12.
Article in English | MEDLINE | ID: mdl-37995947

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the association between autoantibodies and the clinical events. Here, we first aim to characterise the antiphospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased incidence of thrombotic events in COVID-19. METHODS AND RESULTS: We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM antiphospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In line with recent results, we find that IgM autoantibodies against annexin V (AnV), ß2-glycoprotein I (ß2GPI), and prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from IgM to IgG or IgA. PT, ß2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated predominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was SARS-CoV-2 disease severity. CONCLUSION: While we have recapitulated previous findings, we conclude that the presence of the aPL, most notably PT, ß2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic events.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Influenza, Human , Thrombosis , Humans , Antibodies, Antiphospholipid , COVID-19/complications , SARS-CoV-2 , Antibodies, Anticardiolipin , beta 2-Glycoprotein I , Immunoglobulin G , Prothrombin , Immunoglobulin A , Immunoglobulin M , Cytokines
5.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: mdl-34860860

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
6.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373053

ABSTRACT

H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann-Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism.


Subject(s)
Ependymoma , Glioma , Humans , Child , Ceramides , Glioma/drug therapy , Glioma/genetics , Glioma/radiotherapy
7.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33929610

ABSTRACT

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Subject(s)
Arteries/enzymology , Brain/enzymology , Encephalitis/prevention & control , Microglia/enzymology , Muramidase/deficiency , Myeloid Cells/enzymology , Noise, Transportation/adverse effects , Peripheral Vascular Diseases/prevention & control , Aircraft , Animals , Arteries/physiopathology , Brain/pathology , Disease Models, Animal , Encephalitis/enzymology , Encephalitis/etiology , Encephalitis/pathology , Gene Deletion , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Muramidase/genetics , Oxidative Stress , Peripheral Vascular Diseases/enzymology , Peripheral Vascular Diseases/etiology , Peripheral Vascular Diseases/physiopathology , Reactive Oxygen Species/metabolism
8.
Neuropathol Appl Neurobiol ; 47(3): 454-459, 2021 04.
Article in English | MEDLINE | ID: mdl-33249605

ABSTRACT

Coronavirus disease 19 (COVID-19) is a rapidly evolving pandemic caused by the coronavirus Sars-CoV-2. Clinically manifest central nervous system symptoms have been described in COVID-19 patients and could be the consequence of commonly associated vascular pathology, but the detailed neuropathological sequelae remain largely unknown. A total of six cases, all positive for Sars-CoV-2, showed evidence of cerebral petechial hemorrhages and microthrombi at autopsy. Two out of six patients showed an elevated risk for disseminated intravascular coagulopathy according to current criteria and were excluded from further analysis. In the remaining four patients, the hemorrhages were most prominent at the grey and white matter junction of the neocortex, but were also found in the brainstem, deep grey matter structures and cerebellum. Two patients showed vascular intramural inflammatory infiltrates, consistent with Sars-CoV-2-associated endotheliitis, which was associated by elevated levels of the Sars-CoV-2 receptor ACE2 in the brain vasculature. Distribution and morphology of patchy brain microbleeds was clearly distinct from hypertension-related hemorrhage, critical illness-associated microbleeds and cerebral amyloid angiopathy, which was ruled out by immunohistochemistry. Cerebral microhemorrhages in COVID-19 patients could be a consequence of Sars- CoV-2-induced endotheliitis and more general vasculopathic changes and may correlate with an increased risk of vascular encephalopathy.


Subject(s)
COVID-19/complications , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/virology , Vasculitis, Central Nervous System/pathology , Vasculitis, Central Nervous System/virology , Aged , Aged, 80 and over , Endothelial Cells/pathology , Female , Humans , Male , Retrospective Studies , SARS-CoV-2
9.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Article in English | MEDLINE | ID: mdl-29905797

ABSTRACT

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Subject(s)
Aircraft , Brain/physiopathology , Endothelium, Vascular/physiopathology , NADPH Oxidase 2/physiology , Noise, Transportation/adverse effects , Sleep Deprivation/physiopathology , Animals , Circadian Clocks/physiology , Cyclic GMP/metabolism , Gene Expression Regulation , Hemodynamics/physiology , Humans , Inflammation/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress , Signal Transduction
11.
Crit Care Med ; 44(5): e253-63, 2016 May.
Article in English | MEDLINE | ID: mdl-26496445

ABSTRACT

OBJECTIVE: Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Adult anesthetized pigs. INTERVENTIONS: Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS: Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS: Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.


Subject(s)
Brain Injuries/etiology , Brain Injuries/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Animals , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/methods , Inflammation Mediators/metabolism , Pulmonary Atelectasis/prevention & control , RNA, Complementary/metabolism , Random Allocation , Real-Time Polymerase Chain Reaction , Swine , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , gamma-Aminobutyric Acid/metabolism
12.
Neuropathol Appl Neurobiol ; 41(5): 657-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25201289

ABSTRACT

AIMS: The antiphospholipid syndrome (APS) is an autoimmune disease characterized by high titres of auto-antibodies (aPL) leading to thrombosis and consequent infarcts. However, many affected patients develop neurological symptoms in the absence of stroke. Similarly, in a mouse model of this disease (eAPS), animals consistently develop behavioural abnormalities despite lack of ischemic brain injury. Therefore, the present study was designed to identify structural alterations of hippocampal neurones underlying the neurological symptoms in eAPS. METHODS: Adult female Balb/C mice were subjected to either induction of eAPS by immunization with ß2-Glycoprotein 1 or to a control group. After sixteen weeks animals underwent behavioural and cognitive testing using Staircase test (experiment 1 and 2) and Y-maze alternation test (experiment 1) and were tested for serum aPL levels (both experiments). Animals of experiment 1 (n = 7/group) were used for hippocampal neurone analysis using Golgi-Cox staining. Animals of experiment 2 (n = 7/group) were used to analyse molecular markers of total dendritic integrity (MAP2), presynaptic plasticity (synaptobrevin 2/VAMP2) and dendritic spines (synaptopodin) using immunohistochemistry. RESULTS: eAPS mice developed increased aPL titres and presented with abnormal behaviour and impaired short term memory. Further, they revealed a reduction of dendritic complexity of hippocampal CA1 neurones as reflected by decreased dendritic length, arborization and spine density, respectively. Additional decrease of the spine-associated protein expression of Synaptopodin points to dendritic spines as major targets in the pathological process. CONCLUSION: Reduction of hippocampal dendritic complexity may represent the structural basis for the behavioural and cognitive abnormalities of eAPS mice.


Subject(s)
Antiphospholipid Syndrome/pathology , CA1 Region, Hippocampal/pathology , Dendritic Spines/pathology , Animals , Antiphospholipid Syndrome/chemically induced , Antiphospholipid Syndrome/physiopathology , Autoantibodies/blood , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Microglia/pathology , Motor Activity , beta 2-Glycoprotein I
13.
Crit Care Med ; 42(1): 129-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24126440

ABSTRACT

OBJECTIVE: Limited data are available on the influence of sedation for critical care therapy with the widely used anesthetic propofol on recovery from acute traumatic brain injury. To establish the influence of propofol on endogenous neurogenesis and functional recovery after traumatic brain injury, rats were sedated with propofol either during or 2 hours after experimental traumatic brain injury. DESIGN: Randomized controlled animal study. SETTING: University research laboratory. SUBJECTS: One hundred sixteen male Sprague Dawley rats. INTERVENTIONS: Mechanical brain lesion by controlled cortical impact. MEASUREMENTS AND MAIN RESULTS: This study investigated the dose-dependent influence of propofol (36 or 72 mg/kg/hr) either during controlled cortical impact induction or in a delayed application protocol 2 hours after experimental traumatic brain injury. Infusion of propofol resulted in 1) aggravation of neurologic dysfunction, 2) increased 28-day mortality rate, and 3) impaired posttraumatic neurogenesis (5-bromo-2-deoxyuridine + NeuN-positive cells). Application of propofol during trauma induction afforded a significant stronger effect in the high-dose group compared with low-dose propofol. In the posttrauma protocol, animals were sedated with sevoflurane during the controlled cortical impact injury, and propofol was given after an awake phase. In these animals, propofol increased mortality rate and impaired neurologic function and neurogenesis compared with animals without delayed propofol anesthesia. CONCLUSIONS: The results show that propofol may prevent or limit reparative processes in the early-phase postinjury. The results therefore indicate that anesthetics may be potentially harmful not only in very young mammalians but also in adult animals following acute cerebral injuries. The results provide first evidence for an altered sensitivity for anesthesia-related negative effects on neurogenesis, functional outcome, and survival in adult rats with brain lesions.


Subject(s)
Brain Injuries/drug therapy , Hypnotics and Sedatives/adverse effects , Neurogenesis/drug effects , Propofol/adverse effects , Animals , Brain/drug effects , Brain Injuries/mortality , Cognition/drug effects , Dose-Response Relationship, Drug , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/therapeutic use , Male , Maze Learning/drug effects , Propofol/administration & dosage , Propofol/therapeutic use , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects
14.
J Anat ; 224(4): 377-91, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24387791

ABSTRACT

The granulocyte colony-stimulating factor (G-CSF), being a member of the hematopoietic growth factor family, is also critically involved in controlling proliferation and differentiation of neural stem cells. Treatment with G-CSF has been shown to result in substantial neuroprotective and neuroregenerative effects in various experimental models of acute and chronic diseases of the central nervous system. Although G-CSF has been tested in a clinical study for treatment of acute ischemic stroke, there is only fragmentary data on the distribution of this cytokine and its receptor in the human brain. Therefore, the present study was focused on the immunohistochemical analysis of the protein expression of G-CSF and its receptor (G-CSF R) in the adult human brain. Since G-CSF has been shown not only to exert neuroprotective effects in animal models of Alzheimer's disease (AD) but also to be a candidate for clinical treatment, we have also placed an emphasis on the regulation of these molecules in this neurodegenerative disease. One major finding is that both G-CSF and G-CSF R were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of G-CSF and G-CSF R was not restricted to neurons but was also detectable in astrocytes, ependymal cells, and choroid plexus cells. However, the distribution of G-CSF and G-CSF R did not substantially differ between AD brains and control, even in the hippocampus, where early neurodegenerative changes typically occur.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neurons/metabolism
15.
Heliyon ; 10(5): e27515, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38562501

ABSTRACT

We provide in this paper a comprehensive comparison of various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We evaluate the generalizability of out-of-domain ImageNet representations for a target domain of histopathological images, and study the impact of in-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models using the medium-to-large scale datasets of histopathological images. A semi-supervised learning approach is furthermore proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%, and minimizing the pathologist's efforts for annotation. Finally, we provide a visualization tool working at WSI level which generates heatmaps that highlight tumor areas; thus, providing insights to pathologists concerning the most informative parts of the WSI.

16.
EBioMedicine ; 92: 104631, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37253317

ABSTRACT

BACKGROUND: Virchow-Robin spaces (VRS) have been associated with neurodegeneration and neuroinflammation. However, it remains uncertain to what degree non-dilated or dilated VRS reflect specific features of neuroinflammatory pathology. Thus, we aimed at investigating the clinical relevance of VRS as imaging biomarker in multiple sclerosis (MS) and to correlate VRS to their histopathologic signature. METHODS: In a cohort study comprising 142 MS patients and 30 control subjects, we assessed the association of non-dilated and dilated VRS to clinical and magnetic resonance imaging (MRI) outcomes. Findings were corroborated in a validation cohort comprising 63 MS patients. Brain blocks from 6 MS patients and 3 non-MS controls were histopathologically processed to correlate VRS to their tissue substrate. FINDINGS: In our actively treated clinical cohort, the count of dilated centrum semiovale VRS was associated with increased T1 and T2 lesion volumes. There was no systematic spatial colocalization of dilated VRS with MS lesions. At tissue level, VRS mostly corresponded to arteries and were not associated with MS pathological hallmarks. Interestingly, in our ex vivo cohort comprising mostly progressive MS patients, dilated VRS in MS were associated with signs of small vessel disease. INTERPRETATION: Contrary to prior beliefs, these observations suggest that VRS in MS do not associate with an accumulation of immune cells. But instead, these findings indicate vascular pathology as a driver and/or consequence of neuroinflammatory pathology for this imaging feature. FUNDING: NIH, Swedish Society for Medical Research, Swiss National Science Foundation and University of Zurich.


Subject(s)
Glymphatic System , Multiple Sclerosis , Vascular Diseases , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Glymphatic System/diagnostic imaging , Cohort Studies , Brain/pathology
17.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36945422

ABSTRACT

Virchow-Robin spaces (VRS) have been associated with neurodegeneration and neuroinflammation. However, it remains uncertain to what degree non-dilated or dilated VRS reflect specific features of neuroinflammatory pathology. Thus, we aimed at investigating the clinical relevance of VRS as imaging biomarker in multiple sclerosis (MS) and to correlate VRS to their histopathologic signature. In a cohort study comprising 205 MS patients (including a validation cohort) and 30 control subjects, we assessed the association of non-dilated and dilated VRS to clinical and magnetic resonance imaging (MRI) out-comes. Brain blocks from 6 MS patients and 3 non-MS controls were histopathologically processed to correlate VRS to their tissue substrate. The count of dilated centrum semiovale VRS was associated with increased T1 and T2 lesion volumes. There was no systematic spatial colocalization of dilated VRS with MS lesions. At tissue level, VRS mostly corresponded to arteries and were not associated with MS pathological hallmarks. Interestingly, dilated VRS in MS were associated with signs of small vessel disease. Contrary to prior beliefs, these observations suggest that VRS in MS do not associate with accumulation of immune cells. But instead, these findings indicate vascular pathology as a driver and/or consequence of neuroinflammatory pathology for this imaging feature.

18.
Cell Rep ; 42(7): 112696, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37379213

ABSTRACT

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Subject(s)
Melanoma , Transcriptome , Humans , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Receptors, Purinergic P2X7/metabolism , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
19.
Brain Commun ; 5(6): fcad307, 2023.
Article in English | MEDLINE | ID: mdl-38025281

ABSTRACT

Magnetic resonance imaging (MRI) has limitations in identifying underlying tissue pathology, which is relevant for neurological diseases such as multiple sclerosis, stroke or brain tumours. However, there are no standardized methods for correlating MRI features with histopathology. Thus, here we aimed to develop and validate a tool that can facilitate the correlation of brain MRI features to corresponding histopathology. For this, we designed the Brainbox, a waterproof and MRI-compatible 3D printed container with an integrated 3D coordinate system. We used the Brainbox to acquire post-mortem ex vivo MRI of eight human brains, fresh and formalin-fixed, and correlated focal imaging features to histopathology using the built-in 3D coordinate system. With its built-in 3D coordinate system, the Brainbox allowed correlation of MRI features to corresponding tissue substrates. The Brainbox was used to correlate different MR image features of interest to the respective tissue substrate, including normal anatomical structures such as the hippocampus or perivascular spaces, as well as a lacunar stroke. Brain volume decreased upon fixation by 7% (P = 0.01). The Brainbox enabled degassing of specimens before scanning, reducing susceptibility artefacts and minimizing bulk motion during scanning. In conclusion, our proof-of-principle experiments demonstrate the usability of the Brainbox, which can contribute to improving the specificity of MRI and the standardization of the correlation between post-mortem ex vivo human brain MRI and histopathology. Brainboxes are available upon request from our institution.

20.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37722569

ABSTRACT

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Subject(s)
Antioxidants , Corpus Striatum , Oxidative Stress , Animals , Mice , Antioxidants/metabolism , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Corpus Striatum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL