Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 95(6): 1149-1161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558306

ABSTRACT

OBJECTIVE: Androgens have been hypothesized to be involved in the pathophysiology of cluster headache due to the male predominance, but whether androgens are altered in patients with cluster headache remains unclear. METHODS: We performed a prospective, case-controlled study in adult males with cluster headache. Sera were measured for hormones including testosterone, luteinizing hormone (LH), and sex hormone-binding globulin in 60 participants with episodic cluster headache (during a bout and in remission), 60 participants with chronic cluster headache, and 60 age- and sex-matched healthy controls. Free testosterone (fT) was calculated according to the Vermeulen equation. Shared genetic risk variants were assessed between cluster headache and testosterone concentrations. RESULTS: The mean fT/LH ratio was reduced by 35% (95% confidence interval [CI]: 21%-47%, p < 0.0001) in patients with chronic cluster headache and by 24% (95% CI: 9%-37%, p = 0.004) in patients with episodic cluster headache compared to controls after adjusting for age, sleep duration, and use of acute medication. Androgen concentrations did not differ between bouts and remissions. Furthermore, a shared genetic risk allele, rs112572874 (located in the intron of the microtubule associated protein tau (MAPT) gene on chromosome 17), between fT and cluster headache was identified. INTERPRETATION: Our results demonstrate that the male endocrine system is altered in patients with cluster headache to a state of compensated hypogonadism, and this is not an epiphenomenon associated with sleep or the use of acute medication. Together with the identified shared genetic risk allele, this may suggest a pathophysiological link between cluster headache and fT. ANN NEUROL 2024;95:1149-1161.


Subject(s)
Cluster Headache , Hypogonadism , Luteinizing Hormone , Testosterone , Humans , Male , Cluster Headache/genetics , Cluster Headache/blood , Case-Control Studies , Adult , Hypogonadism/genetics , Hypogonadism/blood , Prospective Studies , Middle Aged , Testosterone/blood , Luteinizing Hormone/blood , Sex Hormone-Binding Globulin/genetics
2.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589878

ABSTRACT

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Subject(s)
Estrogens , Vagina , Humans , Animals , Mice , Female , Incidence , Vagina/abnormalities , Estrogens/metabolism , Uterus/metabolism , Estradiol/pharmacology
3.
FASEB J ; 37(2): e22781, 2023 02.
Article in English | MEDLINE | ID: mdl-36688818

ABSTRACT

The adhesion receptor ADGRA3 (GPR125) is a known spermatogonial stem cell marker, but its impact on male reproduction and fertility has not been examined. Using a mouse model lacking Adgra3 (Adgra3-/- ), we show that 55% of the male mice are infertile from puberty despite having normal spermatogenesis and epididymal sperm count. Instead, male mice lacking Adgra3 exhibited decreased estrogen receptor alpha expression and transient dilation of the epididymis. Combined with an increased estradiol production, this indicates a post-pubertal hormonal imbalance and fluid retention. Dye injection revealed a blockage between the ejaculatory duct and the urethra, which is rare in mice suffering from infertility, thereby mimicking the etiologies of obstructive azoospermia found in human male infertility. To summarize, male reproductive tract development is dependent on ADGRA3 function that in concert with estrogen signaling may influence fluid handling during sperm maturation and storage.


Subject(s)
Azoospermia , Infertility, Male , Male , Humans , Azoospermia/complications , Azoospermia/metabolism , Penetrance , Semen , Infertility, Male/metabolism , Epididymis/metabolism
4.
Cell Commun Signal ; 22(1): 330, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879537

ABSTRACT

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/ß-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/ß-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/ß-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/ß-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/ß-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/ß-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.


Subject(s)
Testis , Wnt Signaling Pathway , Humans , Male , Testis/metabolism , Testis/embryology , Female , Sex Differentiation/genetics , Fetus/metabolism , Cell Differentiation , Cell Proliferation , beta Catenin/metabolism , Leydig Cells/metabolism , Leydig Cells/cytology , Ovary/metabolism , Ovary/embryology
5.
Paediatr Perinat Epidemiol ; 38(4): 370-381, 2024 May.
Article in English | MEDLINE | ID: mdl-38453250

ABSTRACT

BACKGROUND: Development of the gonads during fetal life is complex and vital for adult reproductive health. Cell and animal studies have shown an alarming effect of mild analgesics on germ cells in both males and females. More than 50% of pregnant women use mild analgesics during pregnancy, which potentially could compromise the reproductive health of the next generation. OBJECTIVES: We present a research protocol designed to evaluate the effect of prenatal exposure to mild analgesics and endocrine-disrupting chemicals on gonadal function in the offspring. POPULATION: Healthy, singleton pregnant women and their partners. DESIGN: The COPANA cohort is a prospective, observational pregnancy and birth cohort. METHODS: Participants were enrolled during the first trimester of pregnancy. Information on the use of mild analgesics was collected retrospectively 3 months prior to pregnancy and prospectively every 2 weeks throughout the study. We collected extensive data on lifestyle and reproductive health. Biospecimens were collected in the first trimester (maternal and paternal urine- and blood samples), in the third trimester in conjunction with a study-specific ultrasound scan (maternal urine sample), and approximately 3 months post-partum during the infant minipuberty period (maternal and infant urine- and blood samples). A comprehensive evaluation of reproductive function in the infants during the minipuberty phase was performed, including an ultrasound scan of the testis or ovaries and uterus. PRELIMINARY RESULTS: In total, 685 pregnant women and their partners were included between March 2020 and January 2022. A total of 589 infants (287 males) and their parents completed the follow-up during the minipuberty phase (December 2020-November 2022). CONCLUSIONS: The Copenhagen Analgesic Study holds the potential to provide novel and comprehensive insights into the impact of early and late prenatal exposure to mild analgesics and other endocrine-disrupting chemicals on future reproductive function in the offspring.


Subject(s)
Analgesics , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Male , Prenatal Exposure Delayed Effects/epidemiology , Adult , Prospective Studies , Analgesics/therapeutic use , Analgesics/adverse effects , Denmark/epidemiology , Endocrine Disruptors/adverse effects , Pregnancy Trimester, First , Infant, Newborn , Maternal Exposure/adverse effects
6.
Environ Sci Technol ; 58(18): 7719-7730, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651840

ABSTRACT

The relationship between phthalates, a group of chemical pollutants classified as endocrine disruptors, and oxidative stress is not fully understood. The aim of the present hospital-based study was to explore the associations between circulating levels of 10 phthalate metabolites and 8 biomarkers of oxidative stress in adipose tissue. The study population (n = 143) was recruited in two hospitals in the province of Granada (Spain). Phthalate metabolite concentrations were analyzed by isotope diluted online-TurboFlow-LC-MS/MS in serum samples, while oxidative stress markers were measured by commercially available kits in adipose tissue collected during routine surgery. Statistical analyses were performed by MM estimators' robust linear regression and weighted quantile sum regression. Mainly, positive associations were observed of monomethyl phthalate (MMP), monoiso-butyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) (all low molecular weight phthalates) with glutathione peroxidase (GPx) and thiobarbituric acid reactive substances (TBARS), while an inverse association was found between monoiso-nonyl phthalate (MiNP) (high molecular weight phthalate) and the same biomarkers. WQS analyses showed significant effects of the phthalate mixture on GSH (ß = -30.089; p-value = 0.025) and GSSG levels (ß = -19.591; p-value = 0.030). Despite the limitations inherent to the cross-sectional design, our novel study underlines the potential influence of phthalate exposure on redox homeostasis, which warrants confirmation in further research.


Subject(s)
Adipose Tissue , Biomarkers , Oxidative Stress , Phthalic Acids , Humans , Biomarkers/blood , Biomarkers/metabolism , Spain , Adipose Tissue/metabolism , Adult , Female , Male , Cohort Studies , Middle Aged , Environmental Pollutants/blood
7.
Environ Res ; 216(Pt 2): 114470, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36241073

ABSTRACT

The associations between human phthalate exposure and the onset of chronic diseases with an immunological component (e.g., metabolic syndrome, cancer) remain unclear, partly due to the uncertainties in the underlying mechanisms. This study investigates cross-sectional associations of the concentrations of 10 phthalate metabolites with 19 cytokines and acute phase proteins in 213 serum samples of Spanish adults. The associations were explored by Spearman's correlation, multivariable linear regression, and weighted quantile sum regression analyses. In the multivariable analyses, levels of plasminogen activator inhibitor (PAI)-1 were positively associated with mono-n-butyl phthalate (fold-change per one IQR increase in phthalate levels, 95% Confidence Interval: 1.65, 1.45-1.88) and mono-iso-butyl phthalate (3.07, 2.39-3.95), mono-ethyl phthalate (2.05, 1.62-2.61), as well as categorized mono-iso-decyl and mono-benzyl phthalates. The same phthalates also were significantly associated with leptin, interleukin (IL)-18 and monocyte chemoattractant protein-1. Moreover, the proinflammatory markers IL-1ß, IL-17, IL-8, IL-6, IL-12, tumor necrosis factor, and lipopolysaccharide-binding protein showed positive and negative associations with, respectively, mono-(2-ethyl-hexyl) and mono-methyl phthalates. Finally, phthalate mixtures were positively associated with PAI-1, leptin, IL-18, IL-12, IL-8 and IL-1ß. Despite the cross-sectional design limitation, these associations point to relevant subclinical immuno-inflammatory actions of these pollutants, warranting confirmation in future studies.


Subject(s)
Environmental Pollutants , Phthalic Acids , Adult , Humans , Leptin , Cross-Sectional Studies , Cytokines , Interleukin-8 , Phthalic Acids/metabolism , Environmental Pollutants/analysis , Acute-Phase Proteins/analysis , Interleukin-12 , Environmental Exposure/analysis
8.
BMC Med ; 20(1): 399, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266662

ABSTRACT

BACKGROUND: Reduced androgen action during early fetal development has been suggested as the origin of reproductive disorders comprised within the testicular dysgenesis syndrome (TDS). This hypothesis has been supported by studies in rats demonstrating that normal male development and adult reproductive function depend on sufficient androgen exposure during a sensitive fetal period, called the masculinization programming window (MPW). The main aim of this study was therefore to examine the effects of manipulating androgen production during different timepoints during early human fetal testis development to identify the existence and timing of a possible window of androgen sensitivity resembling the MPW in rats. METHODS: The effects of experimentally reduced androgen exposure during different periods of human fetal testis development and function were examined using an established and validated human ex vivo tissue culture model. The androgen production was reduced by treatment with ketoconazole and validated by treatment with flutamide which blocks the androgen receptor. Testicular hormone production ex vivo was measured by liquid chromatography-tandem mass spectrometry or ELISA assays, and selected protein markers were assessed by immunohistochemistry. RESULTS: Ketoconazole reduced androgen production in testes from gestational weeks (GW) 7-21, which were subsequently divided into four age groups: GW 7-10, 10-12, 12-16 and 16-21. Additionally, reduced secretion of testicular hormones INSL3, AMH and Inhibin B was observed, but only in the age groups GW 7-10 and 10-12, while a decrease in the total density of germ cells and OCT4+ gonocytes was found in the GW 7-10 age group. Flutamide treatment in specimens aged GW 7-12 did not alter androgen production, but the secretion of INSL3, AMH and Inhibin B was reduced, and a reduced number of pre-spermatogonia was observed. CONCLUSIONS: This study showed that reduced androgen action during early development affects the function and density of several cell types in the human fetal testis, with similar effects observed after ketoconazole and flutamide treatment. The effects were only observed within the GW 7-14 period-thereby indicating the presence of a window of androgen sensitivity in the human fetal testis.


Subject(s)
Testicular Hormones , Testis , Humans , Male , Androgens/pharmacology , Androgens/metabolism , Flutamide/pharmacology , Flutamide/metabolism , Ketoconazole/metabolism , Ketoconazole/pharmacology , Receptors, Androgen/metabolism , Testicular Hormones/metabolism , Testicular Hormones/pharmacology , Testosterone/pharmacology
9.
Acta Psychiatr Scand ; 146(4): 357-369, 2022 10.
Article in English | MEDLINE | ID: mdl-35729864

ABSTRACT

OBJECTIVE: Women have an increased risk for mental distress and depressive symptoms in relation to pregnancy and birth. The serotonin transporter (SERT) may be involved in the emergence of depressive symptoms postpartum and during other sex-hormone transitions. It may be associated with cerebrospinal fluid (CSF) levels of the main serotonin metabolite 5-hydroxyindolacetic acid (5-HIAA). In 100 healthy pregnant women, who were scheduled to deliver by cesarean section (C-section), we evaluated 5-HIAA and estradiol contributions to mental distress 5 weeks postpartum. METHODS: Eighty-two women completed the study. CSF collected at C-section was analyzed for 5-HIAA, with high performance liquid chromatography. Serum estradiol concentrations were quantified by liquid chromatography tandem mass spectrometry before C-section and postpartum. Postpartum mental distress was evaluated with the Edinburgh Postnatal Depression Scale (EPDS). Associations between EPDS, 5-HIAA, and Δestradiol were evaluated in linear regression models adjusted for age, parity and SERT genotype. RESULTS: Higher levels of postpartum mental distress symptoms were negatively associated with a large decrease in estradiol concentrations (ßΔE2  = 0.73, p = 0.007) and, on a trend level, positively associated with high antepartum 5-HIAA levels (ß5-HIAA  = 0.002, p = 0.06). CONCLUSION: In a cohort of healthy pregnant women, postpartum mental distress was higher in women with high antepartum 5-HIAA (trend) and lower in women with a large perinatal estradiol decrease. We speculate that high antepartum 5-HIAA is a proxy of SERT levels, that carry over to the postpartum period and convey susceptibility to mental distress. In healthy women, the postpartum return to lower estradiol concentrations may promote mental well-being.


Subject(s)
Depression, Postpartum , Cesarean Section , Estradiol , Female , Humans , Hydroxyindoleacetic Acid , Mental Health , Pregnancy , Serotonin , Serotonin Plasma Membrane Transport Proteins
10.
Environ Res ; 206: 112471, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34861228

ABSTRACT

INTRODUCTION: Bisphenol A (BPA) is frequently used in the production of plastics. It is an endocrine disruptor, and BPA exposure in mice has been associated with reduced offspring growth due to insufficient milk production. However, human studies of associations between BPA exposure and duration of breastfeeding are sparse. METHODS: Pregnant women from the Odense Child Cohort (n = 725) donated a third trimester morning urine sample, which was analyzed for BPA by LC-MS/MS. Information about duration of exclusive and any breastfeeding was obtained through questionnaires three and 18 months postpartum, and a subgroup of women responded to weekly text messages about breastfeeding. Associations between pregnancy BPA exposure and duration of breastfeeding were analyzed using Cox regression adjusting for potential confounders. RESULTS: The median urine BPA concentration was 1.29 ng/mL. Compared to women within the lowest tertile of BPA exposure, women in the second and third tertile were slightly more likely to terminate breastfeeding at any given time; HRs (95% CI) were 1.05 (0.87; 1.26) and 1.06 (0.89; 1.27), respectively, and to terminate exclusive breastfeeding at any time up to 20 weeks after birth, HRs (95% CI) were 1.07 (0.88; 1.28) and 1.06 (0.88; 1.27), respectively. However, confidence intervals were also compatible with no effect or even a protective effect. DISCUSSION: This study indicated that high BPA exposure in pregnancy was associated with shorter duration of breastfeeding. Although our findings were not statistically significant, all estimates were above one suggesting increased risk of early breastfeeding termination with high exposure. Using a single spot morning urine sample to measure BPA has likely caused imprecision as it might not adequately reflect long term exposure. Future studies should consider measuring BPA more than once, including other timepoints during pregnancy and after birth.


Subject(s)
Breast Feeding , Tandem Mass Spectrometry , Animals , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/urine , Chromatography, Liquid , Female , Humans , Mice , Phenols , Pregnancy
11.
BMC Med ; 19(1): 204, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34493283

ABSTRACT

BACKGROUND: Disordered fetal adrenal steroidogenesis can cause marked clinical effects including virilization of female fetuses. In postnatal life, adrenal disorders can be life-threatening due to the risk of adrenal crisis and must be carefully managed. However, testing explicit adrenal steroidogenic inhibitory effects of therapeutic drugs is challenging due to species-specific characteristics, and particularly the impact of adrenocorticotropic hormone (ACTH) stimulation on drugs targeting steroidogenesis has not previously been examined in human adrenal tissue. Therefore, this study aimed to examine the effects of selected steroidogenic inhibitors on human fetal adrenal (HFA) steroid hormone production under basal and ACTH-stimulated conditions. METHODS: This study used an established HFA ex vivo culture model to examine treatment effects in 78 adrenals from 50 human fetuses (gestational weeks 8-12). Inhibitors were selected to affect enzymes critical for different steps in classic adrenal steroidogenic pathways, including CYP17A1 (Abiraterone acetate), CYP11B1/2 (Osilodrostat), and a suggested CYP21A2 inhibitor (Efavirenz). Treatment effects were examined under basal and ACTH-stimulated conditions in tissue from the same fetus and determined by quantifying the secretion of adrenal steroids in the culture media using liquid chromatography-tandem mass spectrometry. Statistical analysis was performed on ln-transformed data using one-way ANOVA for repeated measures followed by Tukey's multiple comparisons test. RESULTS: Treatment with Abiraterone acetate and Osilodrostat resulted in potent inhibition of CYP17A1 and CYP11B1/2, respectively, while treatment with Efavirenz reduced testosterone secretion under basal conditions. ACTH-stimulation affected the inhibitory effects of all investigated drugs. Thus, treatment effects of Abiraterone acetate were more pronounced under stimulated conditions, while Efavirenz treatment caused a non-specific inhibition on steroidogenesis. ACTH-stimulation prevented the Osilodrostat-mediated CYP11B1 inhibition observed under basal conditions. CONCLUSIONS: Our results show that the effects of steroidogenic inhibitors differ under basal and ACTH-stimulated conditions in the HFA ex vivo culture model. This could suggest that in vivo effects of therapeutic drugs targeting steroidogenesis may vary in conditions where patients have suppressed or high ACTH levels, respectively. This study further demonstrates that ex vivo cultured HFAs can be used to evaluate steroidogenic inhibitors and thereby provide novel information about the local effects of existing and emerging drugs that targets steroidogenesis.


Subject(s)
Adrenal Glands , Adrenocorticotropic Hormone , Female , Fetus , Humans , Steroid 17-alpha-Hydroxylase , Steroid 21-Hydroxylase , Steroids
12.
FASEB J ; 34(9): 12436-12449, 2020 09.
Article in English | MEDLINE | ID: mdl-32729975

ABSTRACT

Currently, no treatment exists to improve semen quality in most infertile men. Here, we demonstrate systemic and direct effects of Fibroblast growth factor 23 (FGF23) and Klotho, which normally regulate vitamin D and mineral homeostasis, on testicular function. Direct effects are plausible because KLOTHO is expressed in both germ cells and spermatozoa and forms with FGFR1 a specific receptor for the bone-derived hormone FGF23. Treatment with FGF23 increased testicular weight in wild-type mice, while mice with global loss of either FGF23 or Klotho had low testicular weight, reduced sperm count, and sperm motility. Mice with germ cell-specific Klotho (gcKL) deficiency neither had a change in sperm count nor sperm motility. However, a tendency toward fewer pregnancies was detected, and significantly fewer Klotho heterozygous pups originated from gcKL knockdown mice than would be expected by mendelian inheritance. Moreover, gcKL mice had a molecular phenotype with higher testicular expression of Slc34a2 and Trpv5 than wild-type littermates, which suggests a regulatory role for testicular phosphate and calcium homeostasis. KLOTHO and FGFR1 were also expressed in human germ cells and spermatozoa, and FGF23 treatment augmented the calcium response to progesterone in human spermatozoa. Moreover, cross-sectional data revealed that infertile men with the highest serum Klotho levels had significantly higher serum Inhibin B and total sperm count than men with the lowest serum Klotho concentrations. In conclusion, this translational study suggests that FGF23 and Klotho influence gonadal function and testicular mineral ion homeostasis both directly and indirectly through systemic changes in vitamin D and mineral homeostasis.


Subject(s)
Fibroblast Growth Factors/physiology , Glucuronidase/physiology , Testis/physiology , Animals , Calcium/metabolism , Fertility , Fibroblast Growth Factor-23 , Glucuronidase/analysis , Homeostasis , Klotho Proteins , Male , Mice , Mice, Inbred C57BL , Phosphates/metabolism , Receptor, Fibroblast Growth Factor, Type 1/analysis , Sperm Motility , Vitamin D/metabolism
13.
FASEB J ; 34(8): 10373-10386, 2020 08.
Article in English | MEDLINE | ID: mdl-32557858

ABSTRACT

Male development, fertility, and lifelong health are all androgen-dependent. Approximately 95% of circulating testosterone is synthesized by the testis and the final step in this canonical pathway is controlled by the activity of the hydroxysteroid-dehydrogenase-17-beta-3 (HSD17B3). To determine the role of HSD17B3 in testosterone production and androgenization during male development and function we have characterized a mouse model lacking HSD17B3. The data reveal that developmental masculinization and fertility are normal in mutant males. Ablation of HSD17B3 inhibits hyperstimulation of testosterone production by hCG, although basal testosterone levels are maintained despite the absence of HSD17B3. Reintroduction of HSD17B3 via gene-delivery to Sertoli cells in adulthood partially rescues the adult phenotype, showing that, as in development, different cell-types in the testis are able to work together to produce testosterone. Together, these data show that HS17B3 acts as a rate-limiting-step for the maximum level of testosterone production by the testis but does not control basal testosterone production. Measurement of other enzymes able to convert androstenedione to testosterone identifies HSD17B12 as a candidate enzyme capable of driving basal testosterone production in the testis. Together, these findings expand our understanding of testosterone production in males.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , Sertoli Cells/metabolism , Testis/metabolism , Testosterone/metabolism , Androgens/metabolism , Animals , Female , Fertility/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
14.
Paediatr Perinat Epidemiol ; 35(5): 601-611, 2021 09.
Article in English | MEDLINE | ID: mdl-34156716

ABSTRACT

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis governs sexual maturation and reproductive function in humans. In early postnatal life, it is transiently active during which circulating sex steroids reach adult levels. While this so-called minipuberty represents a universal phenomenon in infants of both sexes, its role for early maturation and growth remains incompletely understood. OBJECTIVES: To provide normative data on auxology as well as serum and urinary hormone levels in healthy, full-term infants throughout the first year of life and to investigate associations of postnatal HPG axis dynamics as well as hormonal, genetic and environmental exposures with early genital development and growth. POPULATION: Healthy, Danish, full-term, singleton newborns including their parents. DESIGN: Single-centre, prospective, observational longitudinal pregnancy and birth cohort. METHODS: Newborns were followed with six repeated clinical examinations during a one-year follow-up period. An umbilical cord blood sample was drawn at birth. At each visit, infants underwent a clinical examination focusing on auxology and genital development. Further, blood (serum, plasma, DNA) and urine samples were collected at each visit. Mothers and fathers underwent a clinical examination and provided blood samples prior to and after birth. A subset of parents provided urine samples and breast milk samples. Pregnancy and obstetrical outcomes, and detailed parental questionnaires were compiled. PRELIMINARY RESULTS: Between August 2016 and August 2018, 2481 women with singleton pregnancies were invited to participate of which 298, including their partners, were enrolled (12.0%). A total of 268 healthy, full-term newborns born appropriate for gestational age (AGA) were included at birth, 233 newborns participated in the postnatal follow-up period and 186 completed the one-year follow-up period (9.4% and 7.5%, respectively). CONCLUSION: The COPENHAGEN Minipuberty Study provides detailed, longitudinal data on early genital development and growth including hormonal and genetic profiles and environmental exposure in healthy infants including additional data in their parents.


Subject(s)
Parents , Sexual Maturation , Adult , Cohort Studies , Female , Gestational Age , Humans , Infant , Infant, Newborn , Male , Pregnancy , Prospective Studies
15.
Environ Res ; 195: 110313, 2021 04.
Article in English | MEDLINE | ID: mdl-33069699

ABSTRACT

Phthalates are ubiquitous environmental chemicals with predominantly anti-androgenic, and potentially obesogenic effects. We hypothesised that antenatal phthalate exposure may influence subsequent boy's growth and body composition through childhood and adolescence. Among 1399 singleton males from the Raine Study, 410 had maternal serum and at least one height, BMI or DEXA outcome available after birth and up to 20 years of age. Maternal serum collected at 18 and 34 weeks' gestation was pooled, and analyzed for concentrations of 32 metabolites of 15 phthalate diesters. Their serum concentrations were categorized into undetectable/detectable levels or tertiles. Linear mixed models were used to determine associations between maternal serum phthalate levels and longitudinal height and body mass index (BMI) z-scores in boys from birth to 20 years of age (n = 250 and n = 295 respectively). Linear regression was used to determine associations between maternal phthalate levels and deviation from mid-parental height (n = 177) and DEXA scan outcomes (n = 191) at the 20 year follow-up. Weak positive associations of participants height z-score increase were detected with exposure to some phthalate metabolites in particular to the lower molecular weight phthalate metabolites. Less consistent findings, by mixed model analyses, were detected for BMI and body composition, by dual energy X-ray absorptiometry (DEXA), with some positive associations of phthalate metabolites with BMI and some negative associations with DEXA fat tissue measures, although no consistent findings were evident. In conclusion, we derived some associations of childhood growth with prenatal phthalate exposure, particularly with respect to the lower molecular weight phthalate metabolites.


Subject(s)
Environmental Pollutants , Phthalic Acids , Prenatal Exposure Delayed Effects , Adolescent , Body Composition , Body Mass Index , Child , Environmental Pollutants/toxicity , Female , Humans , Male , Maternal Exposure/adverse effects , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
16.
Environ Health ; 20(1): 24, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712018

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to the developing brain. Several epidemiological studies have investigated the association between prenatal BPA exposure and neurodevelopment, but the results have been inconclusive. OBJECTIVE: To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder (ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children. METHOD: In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5 years. Negative binomial and multiple logistic regression analyses were performed to investigate the association between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658 mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-score. RESULTS: BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median 1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR = 3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03). CONCLUSION: Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older ages, measure their own BPA exposure, and determine if the observed associations persist.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/epidemiology , Benzhydryl Compounds/adverse effects , Endocrine Disruptors/adverse effects , Phenols/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Adult , Benzhydryl Compounds/urine , Child, Preschool , Cohort Studies , Denmark/epidemiology , Endocrine Disruptors/urine , Female , Humans , Male , Maternal-Fetal Exchange , Phenols/urine , Pregnancy
17.
Biol Blood Marrow Transplant ; 26(9): 1635-1645, 2020 09.
Article in English | MEDLINE | ID: mdl-32447044

ABSTRACT

Male gonadal dysfunction is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT), but detailed insight into patterns of male gonadal function at long-term is limited by retrospective studies without semen sample data. In this study, we investigated the risk of azoospermia and testosterone deficiency, the diagnostic value of markers of spermatogenesis, and paternity at long-term follow-up after pediatric allogeneic HSCT. All male HSCT survivors age ≥18 years, transplanted in Denmark or Finland between 1980 and 2010, were invited to participate in this cross-sectional study. Examinations included a semen sample, measurements of reproductive hormones and testicular volume, and screening for chronic graft-versus-host disease (GVHD). Cumulative (pre-HSCT plus HSCT) treatment doses were calculated. Of 181 eligible patients, 98 participated, at a median 18 years (range, 8 to 35 years) after undergoing HSCT. Sperm was found in 30 patients, azoospermia in 42, and azoospermia during testosterone substitution in 24. A higher cumulative testicular irradiation dose was associated with increased risk of azoospermia and testosterone substitution (odds ratio [OR] per +1 Gy, 1.27; 95% confidence interval [CI], 1.14 to 1.46 [P < .001] and 1.21; 95% CI, 1.11 to 1.38 [P < .001], respectively). All patients treated with >12 Gy had azoospermia, and all but 1 patient treated with >16 Gy needed testosterone substitution. In patients treated with chemotherapy only (n = 23), a higher cumulative cyclophosphamide equivalent dose was associated with an increased risk of azoospermia (OR per +1 g/m2, 1.34; 95% CI, 1.01 to 2.15; P = .037). Prepubertal stage at HSCT was a risk factor for testosterone substitution (OR, 15.31; 95% CI, 2.39 to 315; P = .017), whereas chronic GVHD was unrelated to gonadal dysfunction. Inhibin B was the best surrogate marker of azoospermia (area under the curve, .91; 95% CI, .85 to .98; 90% sensitivity and 83% specificity) compared with follicle-stimulating hormone and testicular volume. Of 24 males who had attempted to conceive, 6 had fathered children. In conclusion, the risk of male gonadal dysfunction after pediatric HSCT is high and depends primarily on the cumulative testicular irradiation dose and pubertal stage at transplantation. Our findings support the need for fertility preservation before HSCT, as well as for prolonged follow-up of pediatric HSCT recipients into adulthood.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Child , Cross-Sectional Studies , Finland , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Retrospective Studies
18.
FASEB J ; 33(1): 978-995, 2019 01.
Article in English | MEDLINE | ID: mdl-30080443

ABSTRACT

Testicular Leydig cells (LCs) are the primary source of circulating androgen in men. As men age, circulating androgen levels decline. However, whether reduced LC steroidogenesis results from specific effects of aging within LCs or reflects degenerative alterations to the wider supporting microenvironment is unclear; inability to separate intrinsic LC aging from that of the testicular microenvironment in vivo has made this question difficult to address. To resolve this, we generated novel mouse models of premature aging, driven by CDGSH iron sulfur domain 2 ( Cisd2) deletion, to separate the effects of cell intrinsic aging from extrinsic effects of aging on LC function. At 6 mo of age, constitutive Cisd2-deficient mice display signs of premature aging, including testicular atrophy, reduced LC and Sertoli cell (SC) number, decreased circulating testosterone, increased luteinizing hormone/testosterone ratio, and decreased expression of steroidogenic mRNAs, appropriately modeling primary testicular dysfunction observed in aging men. However, mice with Cisd2 deletion (and thus premature aging) restricted to either LCs or SCs were protected against testicular degeneration, demonstrating that age-related LCs dysfunction cannot be explained by intrinsic aging within either the LC or SC lineages alone. We conclude that age-related LC dysfunction is largely driven by aging of the supporting testicular microenvironment.-Curley, M., Milne, L., Smith, S., Jørgensen, A., Frederiksen, H., Hadoke, P., Potter, P., Smith, L. B. A Young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging.


Subject(s)
Aging, Premature , Testis/physiology , Animals , Autophagy-Related Proteins , Carrier Proteins/genetics , Gene Deletion , Leydig Cells/physiology , Luteinizing Hormone/blood , Male , Mice , Mice, Knockout , Models, Animal , Nerve Tissue Proteins/genetics , Testosterone/blood
19.
Environ Sci Technol ; 54(12): 7471-7484, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32432857

ABSTRACT

Transdermal uptake models compliment in vitro and in vivo experiments in assessing risk of environmental exposures to semivolatile organic compounds (SVOCs). A key parameter for mechanistic models is the chemical driving force for mass transfer from environmental media to human skin. In this research, we measure this driving force in the form of fugacity for chemicals in cosmetic cream and use it to model uptake from cosmetics as a surrogate for condensed environmental media. A simple cosmetic cream, containing no target analytes, was mixed with diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and butyl paraben (BP) and diluted to make creams with concentrations ranging from 0.025% to 6%. The fugacity, relative to the pure compound, was measured using solid-phase micro extraction (SPME). We found that the relationship between the concentration and fugacity is highly nonlinear. The relative fugacity of the chemicals for a 2% w/w formulation was used in a diffusion-based model to predict transdermal uptake of each chemical and was compared with excretion data from a prior human subject study with the same formulation. Dynamic simulations of excretion are generally consistent with the results of the human subject experiment but sensitive to the input parameters, especially the time between cream application and showering.


Subject(s)
Cosmetics , Phthalic Acids , Dibutyl Phthalate , Environmental Exposure/analysis , Humans , Organic Chemicals , Parabens/analysis
20.
Environ Res ; 182: 109101, 2020 03.
Article in English | MEDLINE | ID: mdl-32069767

ABSTRACT

BACKGROUND: Fetal programming of the endocrine system may be affected by exposure to perfluoroalkyl substances (PFAAs), as they easily cross the placental barrier. In vitro studies suggest that PFAAs may disrupt steroidogenesis. "Mini puberty" refers to a transient surge in circulating androgens, androgen precursors, and gonadotropins in infant girls and boys within the first postnatal months. We hypothesize that prenatal PFAA exposure may decrease the concentrations of androgens in mini puberty. OBJECTIVES: To investigate associations between maternal serum PFAA concentrations in early pregnancy and serum concentrations of androgens, their precursors, and gonadotropins during mini puberty in infancy. METHODS: In the prospective Odense Child Cohort, maternal pregnancy serum concentrations of five PFAAs: Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were measured at median gestational week 12 (IQR: 10, 15) in 1628 women. Among these, offspring serum concentrations of dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEAS), androstenedione, 17-hydroxyprogesterone (17-OHP), testosterone, luteinizing (LH) and follicle stimulating hormones (FSH) were measured in 373 children (44% girls; 56% boys) at a mean age of 3.9 (±0.9 SD) months. Multivariate linear regression models were performed to estimate associations. RESULTS: A two-fold increase in maternal PFDA concentration was associated with a reduction in DHEA concentration by -19.6% (95% CI: -32.9%, -3.8%) in girls. In girls, also, the androstenedione and DHEAS concentrations were decreased, albeit non-significantly (p < 0.11), with a two-fold increase in maternal PFDA concentration. In boys, no significant association was found between PFAAs and concentrations of androgens, their precursors, and gonadotropins during mini puberty. CONCLUSION: Prenatal PFDA exposure was associated with significantly lower serum DHEA concentrations and possibly also with lower androstenedione and DHEAS concentrations in female infants at mini puberty. The clinical significance of these findings remains to be elucidated.


Subject(s)
Alkanesulfonic Acids , Decanoic Acids , Dehydroepiandrosterone , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Puberty , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Child , Decanoic Acids/toxicity , Dehydroepiandrosterone/blood , Female , Fluorocarbons/toxicity , Humans , Infant , Male , Pregnancy , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL