Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 166(5): 1082-1083, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565339

ABSTRACT

The retroviral enzyme integrase plays an essential role in the virus replication cycle by catalyzing the covalent insertion of newly synthesized viral DNA into the host cell chromosome early after infection. Now, Kessl et al. report a second function of integrase: binding to the viral RNA genome in virion particles late in the virus replication cycle to promote particle maturation.


Subject(s)
HIV-1/enzymology , RNA, Viral/genetics , Cell Line , DNA, Viral/metabolism , Virion/genetics , Virus Replication/genetics
3.
Proc Natl Acad Sci U S A ; 120(28): e2219543120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406092

ABSTRACT

Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.


Subject(s)
HIV-1 , Sphingomyelin Phosphodiesterase , Mice , Animals , Sphingomyelin Phosphodiesterase/metabolism , HIV-1/metabolism , Sphingomyelins/metabolism , Cell Membrane/metabolism
4.
Proc Natl Acad Sci U S A ; 120(28): e2219475120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406093

ABSTRACT

HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.


Subject(s)
HIV-1 , Infectious Anemia Virus, Equine , Animals , Cats , Horses , Mice , HIV-1/physiology , Sphingomyelin Phosphodiesterase/metabolism , Virus Assembly , Lentivirus
5.
J Virol ; 96(23): e0087622, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36354340

ABSTRACT

The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.


Subject(s)
Adaptor Proteins, Signal Transducing , CD4-Positive T-Lymphocytes , HIV-1 , Membrane Proteins , Virus Replication , Humans , CD4-Positive T-Lymphocytes/virology , HeLa Cells , HIV Envelope Protein gp41/metabolism , HIV-1/physiology , Virus Assembly , Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism
6.
Proc Natl Acad Sci U S A ; 117(17): 9537-9545, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32273392

ABSTRACT

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.


Subject(s)
HIV-1/physiology , Membrane Glycoproteins/metabolism , Virus Attachment , Blood Buffy Coat , CD4-Positive T-Lymphocytes , Gene Expression Regulation , HeLa Cells , Humans
7.
J Biol Chem ; 297(4): 101112, 2021 10.
Article in English | MEDLINE | ID: mdl-34428449

ABSTRACT

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Subject(s)
COVID-19/pathology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Sequence , COVID-19/virology , Cysteine/metabolism , HEK293 Cells , Humans , Lipoylation , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
8.
Proc Natl Acad Sci U S A ; 116(18): 9040-9049, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30975760

ABSTRACT

The p6 domain of HIV-1 Gag contains highly conserved peptide motifs that recruit host machinery to sites of virus assembly, thereby promoting particle release from the infected cell. We previously reported that mutations in the YPXnL motif of p6, which binds the host protein Alix, severely impair HIV-1 replication. Propagation of the p6-Alix binding site mutants in the Jurkat T cell line led to the emergence of viral revertants containing compensatory mutations not in Gag but in Vpu and the envelope (Env) glycoprotein subunits gp120 and gp41. The Env compensatory mutants replicate in Jurkat T cells and primary human peripheral blood mononuclear cells, despite exhibiting severe defects in cell-free particle infectivity and Env-mediated fusogenicity. Remarkably, the Env compensatory mutants can also rescue a replication-delayed integrase (IN) mutant, and exhibit reduced sensitivity to the IN inhibitor Dolutegravir (DTG), demonstrating that they confer a global replication advantage. In addition, confirming the ability of Env mutants to confer escape from DTG, we performed de novo selection for DTG resistance and observed resistance mutations in Env. These results identify amino acid substitutions in Env that confer broad escape from defects in virus replication imposed by either mutations in the HIV-1 genome or by an antiretroviral inhibitor. We attribute this phenotype to the ability of the Env mutants to mediate highly efficient cell-to-cell transmission, resulting in an increase in the multiplicity of infection. These findings have broad implications for our understanding of Env function and the evolution of HIV-1 drug resistance.


Subject(s)
Gene Products, env/genetics , HIV-1/genetics , Virus Replication/genetics , Amino Acid Substitution , Drug Resistance, Viral/genetics , Gene Products, env/metabolism , Glycoproteins/metabolism , HEK293 Cells , HIV Envelope Protein gp41/chemistry , HIV Infections/virology , HIV Seropositivity , HIV-1/metabolism , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Leukocytes, Mononuclear/metabolism , Mutation , Oxazines , Piperazines , Pyridones , Virus Assembly , Virus Replication/physiology
9.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30842281

ABSTRACT

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Subject(s)
HIV Infections/metabolism , Hepatitis A Virus Cellular Receptor 1/physiology , nef Gene Products, Human Immunodeficiency Virus/physiology , Cell Membrane/metabolism , Down-Regulation , HEK293 Cells , HIV Seropositivity , HIV-1/metabolism , HIV-1/pathogenicity , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/metabolism , Host-Pathogen Interactions/physiology , Humans , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Protein Transport , Receptors, Cell Surface/metabolism , Virion/metabolism , Virus Replication/drug effects , nef Gene Products, Human Immunodeficiency Virus/metabolism
10.
J Biol Chem ; 295(21): 7327-7340, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32291285

ABSTRACT

Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.


Subject(s)
Antigens, CD/biosynthesis , Down-Regulation , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Release , Antigens, CD/genetics , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , HEK293 Cells , HIV-1/genetics , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Humans , Vacuolar Proton-Translocating ATPases/genetics , Viral Regulatory and Accessory Proteins/genetics
11.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32938764

ABSTRACT

HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.


Subject(s)
HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV-1/physiology , Cell Line , Cell Membrane/metabolism , Gene Expression , HEK293 Cells , Humans , Male , Protein Transport , T-Lymphocytes/virology , Virion/metabolism , Virus Replication
12.
J Biol Chem ; 294(44): 16266-16281, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31519756

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) machinery drives membrane scission for diverse cellular functions that require budding away from the cytosol, including cell division and transmembrane receptor trafficking and degradation. The ESCRT machinery is also hijacked by retroviruses, such as HIV-1, to release virions from infected cells. The crucial roles of the ESCRTs in cellular physiology and viral disease make it imperative to understand the membrane scission mechanism. Current methodological limitations, namely artifacts caused by overexpression of ESCRT subunits, obstruct our understanding of the spatiotemporal organization of the endogenous human ESCRT machinery. Here, we used CRISPR/Cas9-mediated knock-in to tag the critical ESCRT-I component tumor susceptibility 101 (Tsg101) with GFP at its native locus in two widely used human cell types, HeLa epithelial cells and Jurkat T cells. We validated this approach by assessing the function of these knock-in cell lines in cytokinesis, receptor degradation, and virus budding. Using this probe, we measured the incorporation of endogenous Tsg101 in released HIV-1 particles, supporting the notion that the ESCRT machinery initiates virus abscission by scaffolding early-acting ESCRT-I within the head of the budding virus. We anticipate that these validated cell lines will be a valuable tool for interrogating dynamics of the native human ESCRT machinery.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Transcription Factors/metabolism , CRISPR-Cas Systems , Cytokinesis/physiology , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Genomics/methods , HIV-1/metabolism , HeLa Cells , Humans , Jurkat Cells , Protein Transport , Transcription Factors/genetics , Virion/metabolism , Virus Release
13.
Retrovirology ; 17(1): 12, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32430080

ABSTRACT

BACKGROUND: The continued persistence of HIV-1 as a public health concern due to the lack of a cure calls for the development of new tools for studying replication of the virus. Here, we used NanoLuc, a small and extremely bright luciferase protein, to develop an HIV-1 bioluminescent reporter virus that simplifies functional measurement of virus particle production. RESULTS: The reporter virus encodes a Gag protein containing NanoLuc inserted between the matrix (MA) and capsid (CA) domains of Gag, thereby generating virus particles that package high levels of the NanoLuc reporter. We observe that inserting the NanoLuc protein within HIV-1 Gag has minimal impact on Gag expression and virus particle release. We show that the reporter virus recapitulates inhibition of HIV-1 particle release by Gag mutations, the restriction factor tetherin, and the small-molecule inhibitor amphotericin-B methyl ester. CONCLUSION: These results demonstrate that this vector will provide a simple and rapid tool for functional studies of virus particle assembly and release and high-throughput screening for cellular factors and small molecules that promote or inhibit HIV-1 particle production.


Subject(s)
Genetic Vectors , HIV-1/genetics , HIV-1/physiology , Luminescent Measurements/methods , Virus Release , Capsid/metabolism , Capsid Proteins/metabolism , HeLa Cells , Humans , Luciferases , Mutation , Sensitivity and Specificity , Virion/metabolism , Virus Assembly
14.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31375589

ABSTRACT

The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.


Subject(s)
Cell Membrane/metabolism , Cytosol/metabolism , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/metabolism , Virion/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
15.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31619553

ABSTRACT

The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation.IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.


Subject(s)
HIV-1/genetics , Viral Matrix Proteins/chemistry , Virion/genetics , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Motifs , Amino Acid Substitution , Animals , Cell Line , Gene Expression , HIV-1/metabolism , HeLa Cells , Humans , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/metabolism , Mice , Models, Molecular , Mutation , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Multimerization , T-Lymphocytes/virology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virion/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
16.
J Virol ; 93(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31554688

ABSTRACT

The MT-4 human T-cell line expresses HTLV-1 Tax and is permissive for replication of an HIV-1 gp41 mutant lacking the cytoplasmic tail. MT-4 cells (lot 150048), distributed by the NIH AIDS Reagent Program (NIH-ARP), were found to be Tax deficient and unable to host replication of the gp41-truncated HIV-1 mutant. These findings, together with short tandem repeat profiling, established that lot 150048 are not bona fide MT-4 cells.


Subject(s)
Acquired Immunodeficiency Syndrome , Cell Line/virology , T-Lymphocytes/virology , Gene Products, tax/genetics , HIV Envelope Protein gp41/genetics , HIV-1/genetics , Human T-lymphotropic virus 1 , Humans , Microsatellite Repeats , National Institutes of Health (U.S.) , United States , Virus Replication
17.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30567982

ABSTRACT

A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/drug effects , HIV-1/drug effects , Capsid/metabolism , Capsid Proteins/metabolism , Cell Line , HIV Seropositivity/drug therapy , Humans , Jurkat Cells , Mutation/drug effects , Pentacyclic Triterpenes , Succinates/pharmacology , Triterpenes/pharmacology , Virion/drug effects , Virus Assembly/drug effects , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/metabolism , Betulinic Acid
18.
Retrovirology ; 16(1): 18, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31269971

ABSTRACT

BACKGROUND: Nef is a multifunctional accessory protein encoded by HIV-1, HIV-2 and SIV that plays critical roles in viral pathogenesis, contributing to viral replication, assembly, budding, infectivity and immune evasion, through engagement of various host cell pathways. RESULTS: To gain a better understanding of the role of host proteins in the functions of Nef, we carried out tandem affinity purification-mass spectrometry analysis, and identified over 70 HIV-1 Nef-interacting proteins, including the autophagy-related 9A (ATG9A) protein. ATG9A is a transmembrane component of the machinery for autophagy, a catabolic process in which cytoplasmic components are degraded in lysosomal compartments. Pulldown experiments demonstrated that ATG9A interacts with Nef from not only HIV-1 and but also SIV (cpz, smm and mac). However, expression of HIV-1 Nef had no effect on the levels and localization of ATG9A, and on autophagy, in the host cells. To investigate a possible role for ATG9A in virus replication, we knocked out ATG9A in HeLa cervical carcinoma and Jurkat T cells, and analyzed virus release and infectivity. We observed that ATG9A knockout (KO) had no effect on the release of wild-type (WT) or Nef-defective HIV-1 in these cells. However, the infectivity of WT virus produced from ATG9A-KO HeLa and Jurkat cells was reduced by ~ fourfold and eightfold, respectively, relative to virus produced from WT cells. This reduction in infectivity was independent of the interaction of Nef with ATG9A, and was not due to reduced incorporation of the viral envelope (Env) glycoprotein into the virus. The loss of HIV-1 infectivity was rescued by pseudotyping HIV-1 virions with the vesicular stomatitis virus G glycoprotein. CONCLUSIONS: These studies indicate that ATG9A promotes HIV-1 infectivity in an Env-dependent manner. The interaction of Nef with ATG9A, however, is not required for Nef to enhance HIV-1 infectivity. We speculate that ATG9A could promote infectivity by participating in either the removal of a factor that inhibits infectivity or the incorporation of a factor that enhances infectivity of the viral particles. These studies thus identify a novel host cell factor implicated in HIV-1 infectivity, which may be amenable to pharmacologic manipulation for treatment of HIV-1 infection.


Subject(s)
Autophagy-Related Proteins/metabolism , HIV Infections/virology , Host Microbial Interactions , Membrane Proteins/metabolism , Vesicular Transport Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Autophagy-Related Proteins/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Vesicular Transport Proteins/genetics , Virus Replication , nef Gene Products, Human Immunodeficiency Virus/genetics
19.
Proc Natl Acad Sci U S A ; 113(2): E182-90, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26711999

ABSTRACT

The matrix (MA) domain of HIV Gag has important functions in directing the trafficking of Gag to sites of assembly and mediating the incorporation of the envelope glycoprotein (Env) into assembling particles. HIV-1 MA has been shown to form trimers in vitro; however, neither the presence nor the role of MA trimers has been documented in HIV-1 virions. We developed a cross-linking strategy to reveal MA trimers in virions of replication-competent HIV-1. By mutagenesis of trimer interface residues, we demonstrated a correlation between loss of MA trimerization and loss of Env incorporation. Additionally, we found that truncating the long cytoplasmic tail of Env restores incorporation of Env into MA trimer-defective particles, thus rescuing infectivity. We therefore propose a model whereby MA trimerization is required to form a lattice capable of accommodating the long cytoplasmic tail of HIV-1 Env; in the absence of MA trimerization, Env is sterically excluded from the assembling particle. These findings establish MA trimerization as an obligatory step in the assembly of infectious HIV-1 virions. As such, the MA trimer interface may represent a novel drug target for the development of antiretrovirals.


Subject(s)
HIV-1/metabolism , Protein Multimerization , Viral Matrix Proteins/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , Cross-Linking Reagents/pharmacology , Disulfides/metabolism , HeLa Cells , Humans , Models, Molecular , Mutation/genetics , Protein Structure, Tertiary , Threonine/genetics , Viral Matrix Proteins/metabolism , Virion/metabolism , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
20.
EMBO J ; 32(4): 538-51, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23361315

ABSTRACT

The ubiquitylation signal promotes trafficking of endogenous and retroviral transmembrane proteins. The signal is decoded by a large set of ubiquitin (Ub) receptors that tether Ub-binding domains (UBDs) to the trafficking machinery. We developed a structure-based procedure to scan the protein data bank for hidden UBDs. The screen retrieved many of the known UBDs. Intriguingly, new potential UBDs were identified, including the ALIX-V domain. Pull-down, cross-linking and E3-independent ubiquitylation assays biochemically corroborated the in silico findings. Guided by the output model, we designed mutations at the postulated ALIX-V:Ub interface. Biophysical affinity measurements using microscale-thermophoresis of wild-type and mutant proteins revealed some of the interacting residues of the complex. ALIX-V binds mono-Ub with a K(d) of 119 µM. We show that ALIX-V oligomerizes with a Hill coefficient of 5.4 and IC(50) of 27.6 µM and that mono-Ub induces ALIX-V oligomerization. Moreover, we show that ALIX-V preferentially binds K63 di-Ub compared with mono-Ub and K48 di-Ub. Finally, an in vivo functionality assay demonstrates the significance of ALIX-V:Ub interaction in equine infectious anaemia virus budding. These results not only validate the new procedure, but also demonstrate that ALIX-V directly interacts with Ub in vivo and that this interaction can influence retroviral budding.


Subject(s)
Infectious Anemia Virus, Equine/metabolism , Multienzyme Complexes , Mutation , Ubiquitin-Protein Ligases , Virus Release/physiology , Animals , Humans , Infectious Anemia Virus, Equine/genetics , Mice , Models, Biological , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Protein Structure, Tertiary , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL