Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Rapid Commun Mass Spectrom ; 37(5): e9444, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36744828

ABSTRACT

RATIONALE: We report modifications to a commercial elemental analyzer-isotope ratio mass spectrometer that permit high-precision isotopic analysis of nanomoles of carbon (C), nitrogen (N), and sulfur (S) on a single sample without chemical or cryogenic trapping of gases. The sample size required for measurement by our system is about two orders of magnitude less than that for conventional analyses. METHODS: Our system builds on the analytical advancements offered by the EA IsoLink IRMS System and employs simple modifications to reduce the diameter of the flow path (reactors, water trap, and transfer lines), enhance peak separation (gas chromatography capillary column), and improve sample transfer to the ion source of the mass spectrometer (reduced flow rates). RESULTS: Conventional precision (<0.2‰) can be achieved down to c. 500 nmol C, N, and S for samples analyzed without modification of the commercial system. Further reduction in sample size (<50 nmol C, N, and S) was achieved with minor modifications. There is a significant carbon blank and a small nitrogen blank that can be measured directly and a sulfur blank that can be calculated using regression. Only 30 nmol of N, 22 nmol of C, and 12 nmol of S are needed to achieve better than 1‰ precision (1σ) from a single measurement. Larger samples and more replicate measurements provide better precision. CONCLUSIONS: The nano-EA method described here reduces sample size requirements by two orders of magnitude compared to traditional approaches and improves the accuracy and precision of isotope measurements on sample sizes less than 1 µmol. These advancements simplify the analytical technique and broaden the range and type of samples amenable to EA analysis.

2.
Proc Natl Acad Sci U S A ; 117(41): 25327-25334, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989138

ABSTRACT

An asteroid impact in the Yucatán Peninsula set off a sequence of events that led to the Cretaceous-Paleogene (K-Pg) mass extinction of 76% species, including the nonavian dinosaurs. The impact hit a carbonate platform and released sulfate aerosols and dust into Earth's upper atmosphere, which cooled and darkened the planet-a scenario known as an impact winter. Organic burn markers are observed in K-Pg boundary records globally, but their source is debated. If some were derived from sedimentary carbon, and not solely wildfires, it implies soot from the target rock also contributed to the impact winter. Characteristics of polycyclic aromatic hydrocarbons (PAHs) in the Chicxulub crater sediments and at two deep ocean sites indicate a fossil carbon source that experienced rapid heating, consistent with organic matter ejected during the formation of the crater. Furthermore, PAH size distributions proximal and distal to the crater indicate the ejected carbon was dispersed globally by atmospheric processes. Molecular and charcoal evidence indicates wildfires were also present but more delayed and protracted and likely played a less acute role in biotic extinctions than previously suggested. Based on stratigraphy near the crater, between 7.5 × 1014 and 2.5 × 1015 g of black carbon was released from the target and ejected into the atmosphere, where it circulated the globe within a few hours. This carbon, together with sulfate aerosols and dust, initiated an impact winter and global darkening that curtailed photosynthesis and is widely considered to have caused the K-Pg mass extinction.

3.
Proc Natl Acad Sci U S A ; 117(40): 24720-24728, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32934140

ABSTRACT

Landscape-scale reconstructions of ancient environments within the cradle of humanity may reveal insights into the relationship between early hominins and the changing resources around them. Many studies of Olduvai Gorge during Pliocene-Pleistocene times have revealed the presence of precession-driven wet-dry cycles atop a general aridification trend, though may underestimate the impact of local-scale conditions on early hominins, who likely experienced a varied and more dynamic landscape. Fossil lipid biomarkers from ancient plants and microbes encode information about their surroundings via their molecular structures and composition, and thus can shed light on past environments. Here, we employ fossil lipid biomarkers to study the paleolandscape at Olduvai Gorge at the emergence of the Acheulean technology, 1.7 Ma, through the Lower Augitic Sandstones layer. In the context of the expansion of savanna grasslands, our results represent a resource-rich mosaic ecosystem populated by groundwater-fed rivers, aquatic plants, angiosperm shrublands, and edible plants. Evidence of a geothermally active landscape is reported via an unusual biomarker distribution consistent with the presence of hydrothermal features seen today at Yellowstone National Park. The study of hydrothermalism in ancient settings and its impact on hominin evolution has not been addressed before, although the association of thermal springs in the proximity of archaeological sites documented here can also be found at other localities. The hydrothermal features and resources present at Olduvai Gorge may have allowed early hominins to thermally process edible plants and meat, supporting the possibility of a prefire stage of human evolution.


Subject(s)
Bacteria/chemistry , Hominidae/physiology , Microbiota , Animals , Archaeology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biological Evolution , Biomarkers/analysis , Ecosystem , Paleontology
4.
Proc Natl Acad Sci U S A ; 116(39): 19342-19351, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501350

ABSTRACT

Highly expanded Cretaceous-Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt-water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.

5.
Proc Natl Acad Sci U S A ; 115(48): 12130-12135, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429316

ABSTRACT

That fire facilitated the late Miocene C4 grassland expansion is widely suspected but poorly documented. Fire potentially tied global climate to this profound biosphere transition by serving as a regional-to-local driver of vegetation change. In modern environments, seasonal extremes in moisture amplify the occurrence of fire, disturbing forest ecosystems to create niche space for flammable grasses, which in turn provide fuel for frequent fires. On the Indian subcontinent, C4 expansion was accompanied by increased seasonal extremes in rainfall (evidenced by δ18Ocarbonate), which set the stage for fuel accumulation and fire-linked clearance during wet-to-dry seasonal transitions. Here, we test the role of fire directly by examining the abundance and distribution patterns of fire-derived polycyclic aromatic hydrocarbons (PAHs) and terrestrial vegetation signatures in n-alkane carbon isotopes from paleosol samples of the Siwalik Group (Pakistan). Two million years before the C4 grassland transition, fire-derived PAH concentrations increased as conifer vegetation declined, as indicated by a decrease in retene. This early increase in molecular fire signatures suggests a transition to more fire-prone vegetation such as a C3 grassland and/or dry deciduous woodland. Between 8.0 and 6.0 million years ago, fire, precipitation seasonality, and C4-grass dominance increased simultaneously (within resolution) as marked by sharp increases in fire-derived PAHs, δ18Ocarbonate, and 13C enrichment in n-alkanes diagnostic of C4 grasses. The strong association of evidence for fire occurrence, vegetation change, and landscape opening indicates that a dynamic fire-grassland feedback system was both a necessary precondition and a driver for grassland ecology during the first emergence of C4 grasslands.


Subject(s)
Ecosystem , Poaceae/growth & development , Wildfires , Climate , Forests , Grassland , Pakistan , Seasons , Wildfires/statistics & numerical data
6.
Proc Natl Acad Sci U S A ; 115(42): 10702-10707, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30275328

ABSTRACT

Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.


Subject(s)
Cyanobacteria/growth & development , Ecosystem , Geologic Sediments/analysis , Metagenomics , Microscopy, Fluorescence , Protein Array Analysis , Biological Evolution , Cyanobacteria/genetics , Cyanobacteria/metabolism
7.
Glob Chang Biol ; 25(4): 1529-1546, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30554462

ABSTRACT

Rising atmospheric CO2 concentrations have increased interest in the potential for forest ecosystems and soils to act as carbon (C) sinks. While soil organic C contents often vary with tree species identity, little is known about if, and how, tree species influence the stability of C in soil. Using a 40 year old common garden experiment with replicated plots of eleven temperate tree species, we investigated relationships between soil organic matter (SOM) stability in mineral soils and 17 ecological factors (including tree tissue chemistry, magnitude of organic matter inputs to the soil and their turnover, microbial community descriptors, and soil physicochemical properties). We measured five SOM stability indices, including heterotrophic respiration, C in aggregate occluded particulate organic matter (POM) and mineral associated SOM, and bulk SOM δ15 N and ∆14 C. The stability of SOM varied substantially among tree species, and this variability was independent of the amount of organic C in soils. Thus, when considering forest soils as C sinks, the stability of C stocks must be considered in addition to their size. Further, our results suggest tree species regulate soil C stability via the composition of their tissues, especially roots. Stability of SOM appeared to be greater (as indicated by higher δ15 N and reduced respiration) beneath species with higher concentrations of nitrogen and lower amounts of acid insoluble compounds in their roots, while SOM stability appeared to be lower (as indicated by higher respiration and lower proportions of C in aggregate occluded POM) beneath species with higher tissue calcium contents. The proportion of C in mineral associated SOM and bulk soil ∆14 C, though, were negligibly dependent on tree species traits, likely reflecting an insensitivity of some SOM pools to decadal scale shifts in ecological factors. Strategies aiming to increase soil C stocks may thus focus on particulate C pools, which can more easily be manipulated and are most sensitive to climate change.

8.
Proc Natl Acad Sci U S A ; 113(11): 2874-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26903646

ABSTRACT

The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species' evolution open to debate. Exceptionally well-preserved organic geochemical fossils--biomarkers--preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m(2) archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.


Subject(s)
Diet/history , Ecosystem , Feeding Behavior , Food Supply/history , Fossils , Hominidae/psychology , Plant Dispersal , Alkanes/analysis , Animals , Biological Evolution , Biomarkers , Carnivory , Forests , Grassland , Herbivory , History, Ancient , Humans , Humic Substances/analysis , Lignin/analysis , Phenols/analysis , Plants/chemistry , Plants/classification , Predatory Behavior , Radiometric Dating , Resorcinols/analysis , Tanzania , Tooth/anatomy & histology , Water Supply/history , Wetlands
9.
Rapid Commun Mass Spectrom ; 32(9): 730-738, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29446506

ABSTRACT

RATIONALE: We report modifications to compound-specific isotope analyses (CSIA) to enable high-precision isotopic analyses of picomoles of carbon for intact organic molecules. This sample size is two orders of magnitude below the amounts required for commercial systems. The greatly enhanced sensitivity of this system expands molecular isotope studies and applications previously prohibited by low concentrations and small samples. METHODS: We utilize the resolving power and low volumetric flow rates of narrow-bore capillary gas chromatography to improve sample transfer efficiency while maintaining narrow peak widths. Post-column peak broadening is minimized using a micro-fluidic valve for solvent diversion, capillary combustion reactor, narrow-bore capillary transfer lines, and cryogenic water trap. The mass spectrometer was fitted with collector amplifiers configured to 25 ms response times and a data logger board with firmware capable of rapid data acquisition. Carbon dioxide gas was introduced directly into the ion source to evaluate the dynamic range of the system and accuracy and precision of carbon isotope ratio (δ13 C value) measurements. The accuracy and precision for combusted compounds were evaluated using a suite of n-alkanes. RESULTS: For ≥30 pmol carbon introduced directly into the ion source, the mean difference between the measured and expected δ13 C values is 0.03‰ (1σ, n = 57) and the standard deviation of replicate measurements is 0.11‰ (1σ). The CO2 peak widths generated by the exponential dilution flask were 250 ms and the peak widths produced by combusting n-alkanes were ca 500 ms, less than 25% the width of conventional gas chromatography peaks. For a mixture of 15 n-alkanes (n-C16 to n-C30 ), the accuracy is 0.3‰ (1σ) and precision is 0.9‰ (1σ) for replicate δ13 C measurements with 100 pmol carbon per compound on column. CONCLUSIONS: The pico-CSIA method described here offers improved chromatographic resolution and reduces sample size requirements by two orders of magnitude. These advances significantly broaden the available analytical window for CSIA in research areas frequently hindered by sample size limitations, such as forensics, paleoclimate, astrobiology, and biochemistry.

11.
Proc Natl Acad Sci U S A ; 110(4): 1167-74, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23267092

ABSTRACT

The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma--the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ(13)C values) of lipid biomarkers from ancient plants. Within this framework, δ(13)C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C(4) grasslands abruptly transitioned to closed C(3) forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth's orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution.


Subject(s)
Ecosystem , Hominidae , Africa, Eastern , Animals , Biological Evolution , Carbon Isotopes/analysis , Climate Change/history , Fossils , Geologic Sediments/analysis , History, Ancient , Humans , Lipids/analysis , Paleontology , Plants/chemistry
12.
Proc Natl Acad Sci U S A ; 110(4): 1175-80, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23267102

ABSTRACT

Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change.


Subject(s)
Ecosystem , Plants , Water , Africa, Eastern , Animals , Biological Evolution , Deuterium/analysis , History, Ancient , Hominidae , Humans , Lakes/microbiology , Lipids/analysis , Oxygen Isotopes/analysis , Paleontology , Plants/chemistry , Rain
13.
Proc Natl Acad Sci U S A ; 110(31): 12565-70, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23858459

ABSTRACT

Sixty percent of the world ocean by area is contained in oligotrophic gyres [Longhurst A (1995) Prog Oceanog 36:77-16], the biomass of which is dominated by picophytoplankton, including cyanobacteria and picoeukaryotic algae, as well as picoheterotrophs. Despite their recognized importance in carbon cycling in the surface ocean, the role of small cells and their detrital remains in the transfer of particulate organic matter (POM) to the deep ocean remains disputed. Because oligotrophic marine conditions are projected to expand under current climate trends, a better understanding of the role of small particles in the global carbon cycle is a timely goal. Here we use the lipid profiles, radiocarbon, and stable carbon isotopic signatures of lipids from the North Pacific Subtropical Gyre to show that in the surface ocean, lipids from submicron POM (here called extra-small POM) are distinct from larger classes of suspended POM. Remarkably, this distinct extra-small POM signature dominates the total lipids collected at mesopelagic depth, suggesting that the lipid component of mesopelagic POM primarily contains the exported remains of small particles. Transfer of submicron material to mesopelagic depths in this location is consistent with model results that claim the biological origin of exported carbon should be proportional to the distribution of cell types in the surface community, irrespective of cell size [Richardson TL, Jackson GA (2007) Science 315:838-840]. Our data suggest that the submicron component of exported POM is an important contributor to the global biological pump, especially in oligotrophic waters.


Subject(s)
Aquatic Organisms/physiology , Cyanobacteria/physiology , Geologic Sediments , Marine Biology/methods , Pacific Ocean
15.
Proc Natl Acad Sci U S A ; 107(13): 5738-43, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20231481

ABSTRACT

Fractionation of carbon isotopes by plants during CO(2) uptake and fixation (Delta(leaf)) varies with environmental conditions, but quantitative patterns of Delta(leaf) across environmental gradients at the global scale are lacking. This impedes interpretation of variability in ancient terrestrial organic matter, which encodes climatic and ecological signals. To address this problem, we converted 3,310 published leaf delta(13)C values into mean Delta(leaf) values for 334 woody plant species at 105 locations (yielding 570 species-site combinations) representing a wide range of environmental conditions. Our analyses reveal a strong positive correlation between Delta(leaf) and mean annual precipitation (MAP; R(2) = 0.55), mirroring global trends in gross primary production and indicating stomatal constraints on leaf gas-exchange, mediated by water supply, are the dominant control of Delta(leaf) at large spatial scales. Independent of MAP, we show a lesser, negative effect of altitude on Delta(leaf) and minor effects of temperature and latitude. After accounting for these factors, mean Delta(leaf) of evergreen gymnosperms is lower (by 1-2.7 per thousand) than for other woody plant functional types (PFT), likely due to greater leaf-level water-use efficiency. Together, environmental and PFT effects contribute to differences in mean Delta(leaf) of up to 6 per thousand between biomes. Coupling geologic indicators of ancient precipitation and PFT (or biome) with modern Delta(leaf) patterns has potential to yield more robust reconstructions of atmospheric delta(13)C values, leading to better constraints on past greenhouse-gas perturbations. Accordingly, we estimate a 4.6 per thousand decline in the delta(13)C of atmospheric CO(2) at the onset of the Paleocene-Eocene Thermal Maximum, an abrupt global warming event approximately 55.8 Ma.


Subject(s)
Carbon Isotopes/metabolism , Climate Change , Plant Leaves/metabolism , Altitude , Climate Change/history , Databases, Factual , Ecosystem , History, Ancient , Models, Biological , Rain , Trees/metabolism
16.
Ground Water ; 61(3): 318-329, 2023.
Article in English | MEDLINE | ID: mdl-36103019

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) can represent a significant human health risk if present in aquifers used as a drinking water source. Accurate assessment of PFAS exposure risks requires an improved understanding of field-scale PFAS transport in groundwater. Activities at a former firefighter training site in University Park, Pennsylvania introduced perfluorooctanesulfonic acid (PFOS) to the underlying dolomite aquifer. Groundwater sampling from 2015 to 2018 delineated a PFOS plume with two concentration maxima located approximately 20 and approximately 220 m downgradient of the training site, separated by a zone of lower concentrations. We use a combination of analytical and numerical models, informed by independent measurements of aquifer porosity, hydraulic conductivity, and organic carbon content, to interpret the field observations. Our analysis demonstrates that preferential retention and transport resulting from simple heterogeneity in bedrock sorption, as caused by organic carbon (OC) content variability, provides a plausible explanation for plume separation. Dissolved PFOS partitions strongly to organic solids (high Koc ), so even a small OC (<1 wt%) significantly retards PFOS transport, whereas zones with little to no OC allow for transport rates that approximate those of a conservative solute. Our work highlights an important consideration for modeling the groundwater transport of PFOS, and other compounds with high Koc . In aquifers with discrete layers of varying OC, models using a uniform site-average OC will underestimate transport distances, thereby misrepresenting exposure risks for downgradient communities.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Carbon , Water Pollutants, Chemical/analysis
17.
Science ; 382(6677): 1411-1416, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38127762

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by reactions within cold (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-13C substituted compositions (Δ2×13C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51‰ higher than values expected for a stochastic distribution of isotopes. The Δ2×13C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Δ2×13C values consistent with formation by higher-temperature reactions.

18.
Astrobiology ; 22(S1): S238-S241, 2022 06.
Article in English | MEDLINE | ID: mdl-34904891

ABSTRACT

The National Aeronautics and Space Administration-European Space Agency (NASA-ESA) Mars Sample Return (MSR) campaign involves the collection of samples on Mars by the Perseverance (Mars 2020) rover and their return to Earth. To accomplish this, the Orbiting Sample container (OS) will be sent to Mars to accommodate the collected samples then launched from Mars and returned to Earth, where the samples will be removed for examination in the Sample Return Facility (SRF). Crucial to this entire sequence will be establishment of the required level of cleanliness inside the OS. In February 2021, the NASA Headquarters' Mars Sample Return Program and Office of Planetary Protection assembled an MSR OS Tiger Team (OSTT) to discuss the appropriate cleanliness level options of the interior of the OS. The team's remit was primarily focused on evaluating the trade-offs between Planetary Protection cleanliness levels 4a and 4b. These cleanliness levels are determined by the Committee on Space Research (COSPAR) planetary protection regulations, where 4a requires <300 bacterial spores/m2 and <3 x 105 bacterial spores on the spacecraft (in this case, the interior of the OS) and 4b mandates the more stringent requirement of <30 bacterial spores on the spacecraft. This report documents the consensus opinion submitted by the OSTT that recommended the interior of the OS be cleaned to a 4a requirement with any feasible added effort toward 4b. This report provides, as well, the rationale for that decision.


Subject(s)
Mars , Space Flight , Extraterrestrial Environment , Planets , Spacecraft , United States , United States National Aeronautics and Space Administration
19.
Ecol Lett ; 13(5): E1-6, 2010 May.
Article in English | MEDLINE | ID: mdl-20529099

ABSTRACT

To explain the rise of angiosperms during the Cretaceous, Berendse & Scheffer (Ecol. Lett., 12, 2009, 865) invoke feedbacks between leaf litter, soil nutrients, and growth, overlooking other factors affecting resource acquisition by Cretaceous plants. We evaluate their hypothesis, highlight alternative explanations, and emphasize use of a broader framework for understanding the angiosperm radiation.


Subject(s)
Magnoliopsida/physiology , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL