Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Malar J ; 23(1): 175, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840196

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) are the backbone of anti-malarial vector control in Papua New Guinea (PNG). Over recent years the quality and performance of ITNs delivered to PNG decreased, which has likely contributed to the stagnation in the malaria control effort in the country. The present study reports results from the first 24 months of a durability study with the ITN product Yahe LN® in PNG. METHODS: The durability study was conducted in four villages on the northern coast of PNG, in an area with high malaria parasite transmission, following WHO-recommended methodology adapted to the local scenario. A cohort of n = 500 individually identifiable Yahe® ITNs was distributed by the PNG National Malaria Control Programme from October to December 2021. Insecticidal efficacy of the ITNs was tested using cone bioassays with fully pyrethroid susceptible Anopheles farauti colony mosquitoes at baseline and at 6 months intervals, alongside evaluation of physical integrity and the proportion of ITNs lost to follow-up. A questionnaire was used to collect information on ITN end user behaviour, such as the frequency of use and washing. The observations from the durability study were augmented with simulated laboratory wash assays. RESULTS: Gradual uptake and replacement of previous campaign nets by the communities was observed, such that at 6 months 45% of all newly distributed nets were in use in their designated households. Insecticidal efficacy of the Yahe® nets, expressed as the percent 24 h mortality in cone bioassays decreased from 91 to 45% within the first 6 months of distribution, even though > 90% of study nets had never been washed. Insecticidal efficacy decreased further to < 20% after 24 months. ITNs accumulated physical damage (holes) at a rate similar to previous studies, and 35% were classified as 'too torn' by proportional hole index after 24 months. ITNs were lost to follow-up such that 61% of cohort nets were still present after 24 months. Laboratory wash assays indicated a rapid reduction in insecticidal performance with each consecutive wash such that average 24 h mortality was below 20% after 10 washes. CONCLUSION: Yahe® ITNs are not performing as per label claim in an area with fully pyrethroid susceptible vectors, and should be investigated more comprehensively and in other settings for compliance with currently recommended durability and efficacy thresholds. The mass distribution of low quality ITN products with variable performance is one of the major ongoing challenges for global malaria control in the last decade.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Papua New Guinea , Insecticide-Treated Bednets/statistics & numerical data , Animals , Anopheles/drug effects , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Vectors/drug effects , Humans
2.
Malar J ; 21(1): 349, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424604

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) play a key role in reducing malaria transmission in endemic countries. In a previous study, the authors demonstrated a substantial decrease in the bioefficacy of LLINs for malaria prevention delivered to Papua New Guinea (PNG) between 2013 and 2019. This coincided with a rise in malaria cases in the country. The present study was aimed at determining the underlying cause of the reduced bioefficacy observed in these LLINs. The main hypothesis was that a change in the coating formulation of the respective LLIN product was responsible, and had led to significantly altered product properties and performance. METHODS: A set of PermaNet® 2.0 LLIN samples (n = 12) manufactured between 2007 and 2019 was subjected to combustion ion chromatography in order to understand the chemistry of the LLIN polymer coating formulation. In addition, World Health Organization (WHO) LLIN standard wash tests and cone bioassays were conducted to further characterize the change in product performance that occurred between 2012 and 2013. RESULTS: High polymer fluorine content (average 3.2 g/kg) was measured in PermaNet® 2.0 manufactured up to 2012, whereas nets which were manufactured after 2012 contained very little polymer fluorine (average 0.04 g/kg) indicating a coating formulation change from a fluorocarbon (FC)-based to a non-FC-based formulation. The coating formulation change as part of the manufacturing process thus resulted in a significant reduction in bioefficacy. In addition, the manufacturing change affected wash resistance leading to a faster reduction in 24 h mosquito mortality in the non-FC-coated product with consecutive washes. CONCLUSION: A change in coating formulation of PermaNet® 2.0 resulted in reduced product performance in PNG. Post-2012 PermaNet® 2.0 LLINs should not be considered to be the same product as PermaNet® 2.0 LLINs produced prior to and in 2012. Coating formulation changes should be validated to not impact LLIN product performance.


Subject(s)
Culicidae , Fluorocarbons , Insecticides , Animals , Papua New Guinea , Fluorine , Polymers
3.
Am J Trop Med Hyg ; 106(3): 828-830, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34929669

ABSTRACT

The authors recently reported that long-lasting insecticidal nets (LLINs) distributed in Papua New Guinea (PNG) between 2013 and 2019, exhibited severely diminished efficacy to knock down and kill susceptible Anopheles mosquitoes. This coincided with a rise in malaria observed in PNG since 2015. Here, the authors show that LLIN bioefficacy is increased by heating LLINs prior to WHO cone bioassays. Unused LLINs with low bioefficacy, delivered to PNG in 2019, were heated to 120°C for 5 minutes. Cone bioassays were performed before and at 1 hour, 7 days, and 30 days after heating. This led to a significant increase in 24-hour mortality from 17% to 61% and 60-minute knock down from 31% to 72%. The effect was sustained over 30 days. Bioassays are crucial in quality assurance of LLIN products. Our findings indicate that bioefficacy of LLINs can be increased by heating. This may have implications for quality assurance procedures used to assess LLINs.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Pyrethrins , Animals , Heating , Humans , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control/methods , Nitriles , Pyrethrins/pharmacology
4.
Trends Parasitol ; 37(7): 610-621, 2021 07.
Article in English | MEDLINE | ID: mdl-33773912

ABSTRACT

Over 2.2 billion long-lasting insecticidal nets (LLINs) for malaria control have been delivered to recipient countries. LLINs are the largest single item in the global malaria control budget. To be eligible for donor-funded procurement and distribution schemes, LLIN products must attain and retain World Health Organization (WHO) prequalification status by passing safety, quality, and efficacy benchmarks. Predelivery inspections further test product quality before distribution. We have shown that, despite these quality-assurance measures, substandard LLINs were distributed in Papua New Guinea (PNG) for at least 6 years (2013-2019). Other countries may have received similar LLINs. Here, we discuss the most important weaknesses of the current LLIN quality-assurance framework that have made this possible.


Subject(s)
Insecticide-Treated Bednets/standards , Malaria/prevention & control , Quality Control , Papua New Guinea
SELECTION OF CITATIONS
SEARCH DETAIL