Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
Nature ; 576(7785): 112-120, 2019 12.
Article in English | MEDLINE | ID: mdl-31748746

ABSTRACT

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Subject(s)
Glioma/genetics , Adult , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Disease Progression , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Polymorphism, Single Nucleotide , Recurrence
2.
Nature ; 574(7780): 707-711, 2019 10.
Article in English | MEDLINE | ID: mdl-31664194

ABSTRACT

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Subject(s)
Cerebellar Neoplasms/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , RNA, Small Nuclear/genetics , Adolescent , Adult , Alternative Splicing , Hedgehog Proteins/metabolism , Humans , Mutation , RNA Splice Sites , RNA Splicing
3.
Lancet ; 402(10412): 1564-1579, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37738997

ABSTRACT

The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.


Subject(s)
Brain Neoplasms , Glioma , Humans , Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Combined Modality Therapy , Immunotherapy/methods , Mutation , Tumor Microenvironment
4.
Small ; 18(49): e2204485, 2022 12.
Article in English | MEDLINE | ID: mdl-36207287

ABSTRACT

A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.


Subject(s)
ErbB Receptors , Humans , Biophysics
5.
Lancet Oncol ; 22(6): 813-823, 2021 06.
Article in English | MEDLINE | ID: mdl-34000245

ABSTRACT

BACKGROUND: The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS: This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS: Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION: Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING: Merck Sharpe & Dohme.


Subject(s)
Glioma/drug therapy , Isocitrate Dehydrogenase/genetics , Temozolomide/administration & dosage , Adolescent , Adult , Aged , Australia , Chemotherapy, Adjuvant , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Combined Modality Therapy , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Europe , Female , Glioma/genetics , Glioma/pathology , Glioma/radiotherapy , Humans , Loss of Heterozygosity/genetics , Male , Middle Aged , North America , Radiotherapy, Conformal , Young Adult
6.
Acta Neuropathol ; 142(5): 859-871, 2021 11.
Article in English | MEDLINE | ID: mdl-34409497

ABSTRACT

Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.


Subject(s)
Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , Adolescent , Adult , Biomarkers, Tumor/genetics , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Cohort Studies , Female , Humans , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Progression-Free Survival , Risk Factors , Young Adult
7.
Acta Neuropathol ; 141(6): 945-957, 2021 06.
Article in English | MEDLINE | ID: mdl-33740099

ABSTRACT

Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/genetics , Brain Neoplasms/genetics , DNA Methylation/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Brain Neoplasms/diagnosis , Humans , Prognosis , Survival Rate
8.
Prostate ; 79(9): 937-948, 2019 06.
Article in English | MEDLINE | ID: mdl-31017696

ABSTRACT

BACKGROUND: Intratumoral steroidogenesis and its potential relevance in castration-resistant prostate cancer (CRPC) and in cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1)-inhibitor treated hormone-naïve and patients with CRPC are not well established. In this study, we tested if substrates for de novo steroidogenesis accumulating during CYP17A1 inhibition may drive cell growth in relevant preclinical models. METHODS: PCa cell lines and their respective CRPC sublines were used to model CRPC in vitro. Precursor steroids pregnenolone (Preg) and progesterone (Prog) served as substrate for de novo steroid synthesis. TAK700 (orteronel), abiraterone, and small interfering RNA (siRNA) against CYP17A1 were used to block CYP17A1 enzyme activity. The antiandrogen RD162 was used to assess androgen receptor (AR) involvement. Cell growth was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. AR-target gene expression was quantified by reverse transcription polymerase chain reaction (RT-PCR). Nuclear import studies using cells with green fluorescent protein (GFP)-tagged AR were performed to assess the potential of precursor steroids to directly activate AR. RESULTS: Preg and Prog stimulated cell proliferation and AR target gene expression in VCaP, DuCaP, LNCaP, and their respective CRPC sublines. The antiandrogen RD162, but not CYP17A1 inhibition with TAK700, abiraterone or siRNA, was able to block Preg- and Prog-induced proliferation. In contrast to TAK700, abiraterone also affected dihydrotestosterone-induced cell growth, indicating direct AR binding. Furthermore, Prog-induced AR translocation was not affected by treatment with TAK700 or abiraterone, while it was effectively blocked by the AR antagonist enzalutamide, further demonstrating the direct AR activation by Prog. CONCLUSION: Activation of the AR by clinically relevant levels of Preg and Prog accumulating in abiraterone-treated patients may act as a driver for CRPC. These data provide a scientific rationale for combining CYP17A1 inhibitors with antiandrogens, particularly in patients with overexpressed or mutated-AR.


Subject(s)
Abiraterone Acetate/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroid 17-alpha-Hydroxylase/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Male , Pregnenolone/metabolism , Progesterone/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction , Steroids/biosynthesis
9.
J Neurooncol ; 144(1): 79-87, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31240524

ABSTRACT

PURPOSE: Mutations in the isocitrate dehydrogenase-1 gene (IDH1) occur at high frequency in grade II-III gliomas (LGGs). IDH1 mutations are somatic, missense and heterozygous affecting codon 132 in the catalytic pocket of the enzyme. In LGG, most mutations (90%) result in an arginine to histidine substitution (IDH1R132H) providing a neo-epitope that is expressed in all tumor cells. To assess the immunogenic nature of this epitope, and its potential use to develop T cell treatments, we measured IDH1R132H-specific B and T cell reactivity in blood and tumor tissue of LGG patients. METHODS: Sera from IDH1R132H-mutated LGG patients (n = 27) were assayed for the presence of a neo-specific antibody response using ELISA. In addition, PBMCs (n = 36) and tumor-infiltrating lymphocytes (TILs, n = 10) were measured for T cell activation markers and IFN-γ production by flow cytometry and ELISA. In some assays, frequencies of CD4 T cells specific for mutated peptide presented by HLA-DR were enriched prior to T cell monitoring assays. RESULTS: Despite high sensitivity of our assay, we failed to detect IDH1R132H-specific IgG in sera of LGG patients. Similarly, we did not observe CD4 T cell reactivity towards IDH1R132H in blood, neither did we observe such reactivity following pre-enrichment of frequencies of IDH1R132H-specific CD4 T cells. Finally, we did not detect IDH1R132H-specific CD4 T cells among TILs. CONCLUSIONS: The absence of both humoral and cellular responses in blood and tumors of LGG patients indicates that IDH1R132H is not sufficiently immunogenic and devaluates its further therapeutic exploitation, at least in the majority of LGG patients.


Subject(s)
Arginine/genetics , B-Lymphocytes/immunology , Glioma/immunology , Isocitrate Dehydrogenase/genetics , Mutation , T-Lymphocytes/immunology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Humans , Prognosis
10.
J Neurooncol ; 144(1): 205-210, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31273577

ABSTRACT

PURPOSE: Epidermal growth factor receptor (EGFR) amplification has been reported to occur in ~ 50% of glioblastomas (GBMs). We are conducting several global studies that require central testing for EGFR amplification during screening, representing an opportunity to confirm the frequency of amplification in GBM in a large cohort and to evaluate whether EGFR amplification differs by region of the world. METHODS: EGFR amplification was measured by fluorescence in situ hybridization during screening for therapeutic trials of an EGFR antibody-drug conjugate: two Phase 2/3 global trials (INTELLANCE-1, INTELLANCE-2), and a Japanese Phase 1/2 trial (INTELLANCE-J). We evaluated the proportion of tumor tissue samples harboring EGFR amplification among those tested and differences in amplification frequency by geography. RESULTS: EGFR was amplified in 54% of 3150 informative cases screened for INTELLANCE-1 and -2, consistent with historic controls, but was significantly lower in patients from Asia versus the rest of the world (35% vs. 56%, P < 0.0030). The independent INTELLANCE-J trial validated this finding (33% amplified of 153 informative cases). CONCLUSIONS: EGFR amplification occurs less frequently in patients from Asia than elsewhere. Further study is required to understand biological differences to optimize treatment in glioblastoma.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Gene Amplification , Glioblastoma/genetics , Mass Screening/standards , Patient Selection , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Double-Blind Method , ErbB Receptors/genetics , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Prognosis
11.
Lancet Oncol ; 19(9): 1170-1179, 2018 09.
Article in English | MEDLINE | ID: mdl-30115593

ABSTRACT

BACKGROUND: Bevacizumab is frequently used in the treatment of recurrent WHO grade II and III glioma, but without supporting evidence from randomised trials. Therefore, we assessed the use of bevacizumab in patients with first recurrence of grade II or III glioma who did not have 1p/19q co-deletion. METHODS: The TAVAREC trial was a randomised, open-label phase 2 trial done at 32 centres across Europe in patients with locally diagnosed grade II or III glioma without 1p/19q co-deletion, with a first and contrast-enhancing recurrence after initial radiotherapy or chemotherapy, or both. Previous chemotherapy must have been stopped at least 6 months before enrolment and radiotherapy must have been stopped at least 3 months before enrolment. Random group assignment was done electronically through the European Organisation for Research and Treatment of Cancer web-based system, stratified by a minimisation procedure using institution, initial histology (WHO grade II vs III), WHO performance status (0 or 1 vs 2), and previous treatment (radiotherapy, chemotherapy, or both). Patients were assigned to receive either temozolomide (150-200 mg/m2, orally) monotherapy on days 1-5 every 4 weeks for a maximum of 12 cycles, or the same temozolomide regimen in combination with bevacizumab (10 mg/kg, intravenously) every 2 weeks until progression. The primary endpoint was overall survival at 12 months in the per-protocol population. Safety analyses were done in all patients who started their allocated treatment. The study is registered at EudraCT (2009-017422-39) and ClinicalTrials.gov (NCT01164189), and is complete. FINDINGS: Between Feb 8, 2011, and July 31, 2015, 155 patients were enrolled and randomly assigned to receive either monotherapy (n=77) or combination therapy (n=78). Overall survival in the per-protocol population at 12 months was achieved by 44 (61% [80% CI 53-69]) of 72 patients in the temozolomide group and 38 (55% [47-69]) of 69 in the combination group. The most frequent toxicity was haematological: 17 (23%) of 75 patients in the monotherapy group and 25 (33%) of 76 in the combination group developed grade 3 or 4 haematological toxicity. Other than haematological toxicities, the most common adverse events were nervous system disorders (59 [79%] of 75 patients in the monotherapy group vs 65 [86%] of 76 in the combination group), fatigue (53 [70%] vs 61 [80%]), and nausea (39 [52%] vs 43 [56%]). Infections were more frequently reported in the combination group (29 [38%] of 76 patients) than in the monotherapy group (17 [23%] of 75). One treatment-related death was reported in the combination group (infection after intratumoral haemorrhage during a treatment-related grade 4 thrombocytopenia). INTERPRETATION: We found no evidence of improved overall survival with bevacizumab and temozolomide combination treatment versus temozolomide monotherapy. The findings from this study provide no support for further phase 3 studies on the role of bevacizumab in this disease. FUNDING: Roche Pharmaceuticals.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/administration & dosage , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neoplasm Recurrence, Local , Temozolomide/administration & dosage , Adult , Antineoplastic Agents, Alkylating/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chromosome Deletion , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Drug Administration Schedule , Europe , Female , Glioma/genetics , Glioma/mortality , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Temozolomide/adverse effects , Time Factors , Treatment Outcome
12.
Acta Neuropathol ; 135(4): 601-615, 2018 04.
Article in English | MEDLINE | ID: mdl-29368212

ABSTRACT

The optimal treatment for patients with low-grade glioma (LGG) WHO grade II remains controversial. Overall survival ranges from 2 to over 15 years depending on molecular and clinical factors. Hence, risk-adjusted treatments are required for optimizing outcome and quality of life. We aim at identifying mechanisms and associated molecular markers predictive for benefit from radiotherapy (RT) or temozolomide (TMZ) in LGG patients treated in the randomized phase III trial EORTC 22033. As candidate biomarkers for these genotoxic treatments, we considered the DNA methylome of 410 DNA damage response (DDR) genes. We first identified 62 functionally relevant CpG sites located in the promoters of 24 DDR genes, using the LGG data from The Cancer Genome Atlas. Then we tested their association with outcome [progression-free survival (PFS)] depending on treatment in 120 LGG patients of EORTC 22033, whose tumors were mutant for isocitrate dehydrogenase 1 or 2 (IDHmt), the molecular hallmark of LGG. The results suggested that seven CpGs of four DDR genes may be predictive for longer PFS in one of the treatment arms that comprised MGMT, MLH3, RAD21, and SMC4. Most interestingly, the two CpGs identified for MGMT are the same, previously selected for the MGMT-STP27 score that is used to determine the methylation status of the MGMT gene. This score was higher in the LGG with 1p/19q codeletion, in this and other independent LGG datasets. It was predictive for PFS in the TMZ, but not in the RT arm of EORTC 22033. The results support the hypothesis that a high score predicts benefit from TMZ treatment for patients with IDHmt LGG, regardless of the 1p/19q status. This MGMT methylation score may identify patients who benefit from first-line treatment with TMZ, to defer RT for long-term preservation of cognitive function and quality of life.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/therapy , DNA Methylation , Discoidin Domain Receptors/genetics , Glioma/genetics , Glioma/therapy , Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , CpG Islands , DNA , DNA Methylation/drug effects , DNA Methylation/radiation effects , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Epigenesis, Genetic , Female , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Neoplasm Grading , Progression-Free Survival , Promoter Regions, Genetic , Temozolomide/therapeutic use , Treatment Outcome , Tumor Suppressor Proteins/genetics
13.
Acta Neuropathol ; 136(1): 153-166, 2018 07.
Article in English | MEDLINE | ID: mdl-29687258

ABSTRACT

According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AIIIDHmut), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIIIIDHmut), and WHO grade IV glioblastoma, IDH-mutant (GBMIDHmut). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AIIIDHmut and AAIIIIDHmut have lost their significance. In contrast, GBMIDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.


Subject(s)
Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Adolescent , Adult , Aged , Algorithms , Astrocytoma/mortality , Brain Neoplasms/mortality , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Ki-67 Antigen/metabolism , Male , Middle Aged , Models, Biological , Neoplasm Grading , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , World Health Organization , Young Adult
14.
Acta Neuropathol ; 136(2): 227-237, 2018 08.
Article in English | MEDLINE | ID: mdl-30019219

ABSTRACT

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.


Subject(s)
DNA Copy Number Variations/genetics , Ependymoma/classification , Ependymoma/genetics , Infratentorial Neoplasms/classification , Infratentorial Neoplasms/genetics , Adolescent , Adult , Age Factors , Child , Cohort Studies , DNA Methylation/genetics , Ependymoma/pathology , Ependymoma/surgery , Female , Gene Expression Profiling , Humans , Infratentorial Neoplasms/pathology , Infratentorial Neoplasms/surgery , Kaplan-Meier Estimate , Male , Microarray Analysis , Middle Aged , Young Adult
15.
J Neurooncol ; 139(2): 349-357, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29663171

ABSTRACT

BACKGROUND: At current prognostication of low grade glioma remains suboptimal and might be improved with additional markers. These may guide treatment decisions, in particular on early adjuvant therapy versus wait and see after surgery. METHODS: We used a targeted Next-Generation Sequencing panel to assess mutational and copy number status of selected genes and chromosomes in a consecutive series of adult grade II supratentorial glioma, and assessed the impact of molecular markers of interest on overall survival. RESULTS: 207 IDH mutated grade II glioma samples were analyzed with a median follow-up of 6.9 years. Loss of region 9p21.3 did not show a correlation with outcome in IDH mutated 1p/19q-codeleted oligodendroglioma or IDH mutated astrocytoma. We found a significant shorter overall survival with univariable analysis in IDH mutated astrocytoma patients with trisomy of chromosome 7 (Log rank P = 0.044) and in IDH mutated 1p/19q-codeleted oligodendroglioma patients with a PTEN mutation (Log rank P = 0.033). We could not validate these findings in multivariate analysis or in the TCGA dataset. CONCLUSIONS: Loss of 9p21.3 is not associated with outcome in a molecularly defined cohort of grade II glioma and therefore it remains unclear if loss of 9p21.3 can be used as additional marker of anaplasia or to guide treatment decisions. Trisomy of chromosome 7 in IDH mutated astrocytoma and PTEN mutations in IDH mutated oligodendroglioma are potential markers of poor prognosis, but require confirmation in larger series.


Subject(s)
Central Nervous System Neoplasms/genetics , DNA Copy Number Variations , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Central Nervous System Neoplasms/enzymology , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Chromosomes, Human, Pair 7 , Chromosomes, Human, Pair 9 , Female , Follow-Up Studies , Glioma/enzymology , Glioma/mortality , Glioma/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Grading , Prognosis , Survival Analysis , Trisomy
16.
Lancet Oncol ; 18(6): e315-e329, 2017 06.
Article in English | MEDLINE | ID: mdl-28483413

ABSTRACT

The European Association for Neuro-Oncology guideline provides recommendations for the clinical care of adult patients with astrocytic and oligodendroglial gliomas, including glioblastomas. The guideline is based on the 2016 WHO classification of tumours of the central nervous system and on scientific developments since the 2014 guideline. The recommendations focus on pathological and radiological diagnostics, and the main treatment modalities of surgery, radiotherapy, and pharmacotherapy. In this guideline we have also integrated the results from contemporary clinical trials that have changed clinical practice. The guideline aims to provide guidance for diagnostic and management decisions, while limiting unnecessary treatments and costs. The recommendations are a resource for professionals involved in the management of patients with glioma, for patients and caregivers, and for health-care providers in Europe. The implementation of this guideline requires multidisciplinary structures of care, and defined processes of diagnosis and treatment.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Oligodendroglioma/diagnosis , Oligodendroglioma/therapy , Adult , Antineoplastic Agents/therapeutic use , Astrocytoma/pathology , Brain Neoplasms/pathology , Combined Modality Therapy , Humans , Magnetic Resonance Imaging , Molecular Diagnostic Techniques , Neuroimaging , Oligodendroglioma/pathology , Positron-Emission Tomography , Radiotherapy
17.
J Neurooncol ; 133(1): 137-146, 2017 05.
Article in English | MEDLINE | ID: mdl-28401374

ABSTRACT

Early resection is standard of care for presumed low-grade gliomas. This is based on studies including only tumors that were post-surgically confirmed as low-grade glioma. Unfortunately this does not represent the clinicians' situation wherein he/she has to deal with a lesion on MRI that is suspect for low-grade glioma (i.e. without prior knowledge on the histological diagnosis). We therefore aimed to determine the optimal initial strategy for patients with a lesion suspect for low-grade glioma, but not histologically proven yet. We retrospectively identified 150 patients with a resectable presumed low-grade-glioma and who were otherwise in good clinical condition. In this cohort we compared overall survival between three types of initital treatment strategy: a wait-and-scan approach (n = 38), early resection (n = 83), or biopsy for histopathological verification (n = 29). In multivariate analysis, no difference was observed in overall survival for early resection compared to wait-and-scan: hazard ratio of 0.92 (95% CI 0.43-2.01; p = 0.85). However, biopsy strategy showed a shorter overall survival compared to wait-and-scan: hazard ratio of 2.69 (95% CI 1.19-6.06; p = 0.02). In this cohort we failed to confirm superiority of early resection over a wait-and-scan approach in terms of overall survival, though longer follow-up is required for final conclusion. Biopsy was associated with shorter overall survival.


Subject(s)
Brain Neoplasms/surgery , Glioma/surgery , Adult , Biopsy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Conservative Treatment , Female , Follow-Up Studies , Glioma/diagnostic imaging , Glioma/pathology , Humans , Kaplan-Meier Estimate , Male , Multivariate Analysis , Neoplasm Grading , Proportional Hazards Models , Retrospective Studies
18.
Proc Natl Acad Sci U S A ; 111(9): 3538-43, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24550449

ABSTRACT

We hypothesized that key signaling pathways of glioma genesis might enable the molecular classification of gliomas. Gene coexpression modules around epidermal growth factor receptor (EGFR) (EM, 29 genes) or platelet derived growth factor receptor A (PDGFRA) (PM, 40 genes) in gliomas were identified. Based on EM and PM expression signatures, nonnegative matrix factorization reproducibly clustered 1,369 adult diffuse gliomas WHO grades II-IV from four independent databases generated in three continents, into the subtypes (EM, PM and EM(low)PM(low) gliomas) in a morphology-independent manner. Besides their distinct patterns of genomic alterations, EM gliomas were associated with higher age at diagnosis, poorer prognosis, and stronger expression of neural stem cell and astrogenesis genes. Both PM and EM(low)PM(low) gliomas were associated with younger age at diagnosis and better prognosis. PM gliomas were enriched in the expression of oligodendrogenesis genes, whereas EM(low)PM(low) gliomas were enriched in the signatures of mature neurons and oligodendrocytes. The EM/PM-based molecular classification scheme is applicable to adult low-grade and high-grade diffuse gliomas, and outperforms existing classification schemes in assigning diffuse gliomas to subtypes with distinct transcriptomic and genomic profiles. The majority of the EM/PM classifiers, including regulators of glial fate decisions, have not been extensively studied in glioma biology. Subsets of these classifiers were coexpressed in mouse glial precursor cells, and frequently amplified or lost in an EM/PM glioma subtype-specific manner, resulting in somatic copy number alteration-dependent gene expression that contributes to EM/PM signatures in glioma samples. EM/PM-based molecular classification provides a molecular diagnostic framework to expedite the search for new glioma therapeutic targets.


Subject(s)
ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/genetics , Glioma/classification , Glioma/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/genetics , Age Factors , Animals , China , Cluster Analysis , ErbB Receptors/genetics , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Mice , Neural Stem Cells/metabolism , Polymorphism, Single Nucleotide/genetics , Prognosis , Receptor, Platelet-Derived Growth Factor alpha/genetics
19.
J Neurooncol ; 122(3): 461-70, 2015 May.
Article in English | MEDLINE | ID: mdl-25694352

ABSTRACT

Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Oligodendroglioma/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Genome-Wide Association Study , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Guanine Nucleotide Dissociation Inhibitors/genetics , HEK293 Cells , Humans , Karyopherins/genetics , Male , Neoplasm Proteins/metabolism , Oligodendroglioma/pathology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Transfection , Exportin 1 Protein
20.
Genes Chromosomes Cancer ; 52(7): 665-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23629961

ABSTRACT

Recent studies have indicated a prognostic role for genome-wide methylation in gliomas: Tumors that show an overall increase in DNA methylation at CpG sites (CIMP+; CpG island methylator phenotype) have a more favorable prognosis than CIMP- gliomas. Here, we have determined whether methylation profiling can identify more and clinically relevant molecular subtypes of glioma by performing genome-wide methylation profiling on 138 glial brain tumors of all histological diagnosis. Hopach (Hierarchical ordered partitioning and collapsing hybrid) clustering using the 1,000 most variable CpGs identified three distinct glioma subtypes (C+(1p19q), C+(wt), and C-) and one adult brain subtype. All "C+(1p19q) " and "C+(wt)" tumors were CIMP+ whereas most (50/54) "C-" tumors were CIMP-. The C- subtype gliomas contained many glioblastomas and all pilocytic astrocytomas. 1p19q LOH was frequent in the C+(1p19q) subtype. Other genetic changes (IDH1 mutation and EGFR amplification) and gene-expression based molecular subtypes also segregated in distinct methylation subtypes, demonstrating that these subtypes are also genetically distinct. Each subtype was associated with its own prognosis: median survival for C-, C+(1p19q), and C+(wt) tumors was 1.18, 5.00, and 2.62 years, respectively. The prognostic value of these methylation subtypes was validated on an external dataset from the TCGA. Analysis of recurrences of 14 primary tumors samples indicates that shifts between some C+(wt) and C+(1p/19q) tumors can occur between the primary and recurrent tumor, but CIMP status remained stable. Our data demonstrate that methylation profiling identifies at least three prognostically relevant subtypes of glioma that can aid diagnosis and potentially guide treatment for patients.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , DNA Methylation/genetics , Glioma/genetics , Adult , Aged , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , CpG Islands/genetics , Female , Genome, Human , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/mortality , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Loss of Heterozygosity , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL