Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Aging ; 3(12): 1561-1575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957361

ABSTRACT

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.


Subject(s)
COVID-19 , Humans , Mice , Animals , Aged , Senotherapeutics , SARS-CoV-2 , Aging , Brain
2.
Sci Adv ; 8(48): eadd8095, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36449607

ABSTRACT

All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Animals , Mice , Phosphorylation , Viral Proteins , Placenta , RNA, Viral/genetics , Antiviral Agents , RNA, Untranslated/genetics , Zika Virus Infection/genetics , STAT1 Transcription Factor/genetics
3.
Vaccines (Basel) ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35632447

ABSTRACT

The COVID-19 pandemic is the biggest public health threat facing the world today. Multiple vaccines have been approved; however, the emergence of viral variants such as the recent Omicron raises the possibility of booster doses to achieve adequate protection. In Brazil, the CoronaVac (Sinovac, Beijing, China) vaccine was used; however, it is important to assess the immune response to this vaccine over time. This study aimed to monitor the anti-SARS-CoV-2 antibody responses in those immunized with CoronaVac and SARS-CoV-2 infected individuals. Samples were collected between August 2020 and August 2021. Within the vaccinated cohort, some individuals had a history of infection by SARS-CoV-2 prior to immunization, while others did not. We analyzed RBD-specific and neutralizing-antibodies. Anti-RBD antibodies were detected in both cohorts, with a peak between 45-90 days post infection or vaccination, followed by a steady decline over time. In those with a previous history of COVID-19, a higher, longer, more persistent response was observed. This trend was mirrored in the neutralization assays, where infection, followed by immunization, resulted in higher, longer lasting responses which were conditioned on the presence of levels of RBD antibodies right before the vaccination. This supports the necessity of booster doses of CoronaVac in due course to prevent serious disease.

4.
Front Microbiol ; 12: 625136, 2021.
Article in English | MEDLINE | ID: mdl-33643253

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 and is capable of human-to-human transmission and rapid global spread. The rapid emergence and global spread of SARS-CoV-2 has encouraged the establishment of a rapid, sensitive, and reliable viral detection and quantification methodology. Here, we present an alternative assay, termed immuno-plaque assay (iPA), which utilizes a combination of plaque assay and immunofluorescence techniques. We have extensively optimized the conditions for SARS-CoV-2 infection and demonstrated the great flexibility of iPA detection using several antibodies and dual-probing with two distinct epitope-specific antibodies. In addition, we showed that iPA could be utilized for ultra-high-throughput viral titration and neutralization assay within 24 h and is amenable to a 384-well format. These advantages will significantly accelerate SARS-CoV-2 research outcomes during this pandemic period.

5.
Science ; 371(6525): 190-194, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33414219

ABSTRACT

There are no approved flaviviral therapies and the development of vaccines against flaviruses has the potential of being undermined by antibody-dependent enhancement (ADE). The flavivirus nonstructural protein 1 (NS1) is a promising vaccine antigen with low ADE risk but has yet to be explored as a broad-spectrum therapeutic antibody target. Here, we provide the structural basis of NS1 antibody cross-reactivity through cocrystallization of the antibody 1G5.3 with NS1 proteins from dengue and Zika viruses. The 1G5.3 antibody blocks multi-flavivirus NS1-mediated cell permeability in disease-relevant cell lines, and therapeutic application of 1G5.3 reduces viremia and improves survival in dengue, Zika, and West Nile virus murine models. Finally, we demonstrate that 1G5.3 protection is independent of effector function, identifying the 1G5.3 epitope as a key site for broad-spectrum antiviral development.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Dengue Virus/immunology , Viral Nonstructural Proteins/immunology , West Nile virus/immunology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CHO Cells , Cell Line , Cricetulus , Cross Reactions , Dengue/prevention & control , Dengue/therapy , Disease Models, Animal , Humans , Mice , Protein Domains , Viral Nonstructural Proteins/chemistry , Viremia/therapy , West Nile Fever/prevention & control , West Nile Fever/therapy , Zika Virus Infection/prevention & control , Zika Virus Infection/therapy
6.
Nat Commun ; 12(1): 3431, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103499

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Subject(s)
Reverse Genetics , SARS-CoV-2/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , Culicidae/virology , Furin/metabolism , Genome, Viral , HEK293 Cells , Humans , Mice , Mutation/genetics , NIH 3T3 Cells , Polymerase Chain Reaction , RAW 264.7 Cells , Receptors, Virus/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Replication
7.
Nat Commun ; 11(1): 2205, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371874

ABSTRACT

Flaviviruses, including Zika virus (ZIKV), utilise host mRNA degradation machinery to produce subgenomic flaviviral RNA (sfRNA). In mammalian hosts, this noncoding RNA facilitates replication and pathogenesis of flaviviruses by inhibiting IFN-signalling, whereas the function of sfRNA in mosquitoes remains largely elusive. Herein, we conduct a series of in vitro and in vivo experiments to define the role of ZIKV sfRNA in infected Aedes aegypti employing viruses deficient in production of sfRNA. We show that sfRNA-deficient viruses have reduced ability to disseminate and reach saliva, thus implicating the role for sfRNA in productive infection and transmission. We also demonstrate that production of sfRNA alters the expression of mosquito genes related to cell death pathways, and prevents apoptosis in mosquito tissues. Inhibition of apoptosis restored replication and transmission of sfRNA-deficient mutants. Hence, we propose anti-apoptotic activity of sfRNA as the mechanism defining its role in ZIKV transmission.


Subject(s)
Aedes/genetics , Apoptosis/genetics , Mosquito Vectors/genetics , RNA, Viral/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Aedes/cytology , Aedes/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Gene Expression Regulation , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/cytology , Mosquito Vectors/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Vero Cells , Virus Replication/genetics , Zika Virus/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology
8.
Nat Microbiol ; 4(5): 876-887, 2019 05.
Article in English | MEDLINE | ID: mdl-30886357

ABSTRACT

Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates1. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy2-5 whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.


Subject(s)
DNA Mutational Analysis/methods , Viral Tropism , Zika Virus Infection/virology , Zika Virus/physiology , Aedes/virology , Animals , Biological Evolution , Chlorocebus aethiops , Female , Host Specificity , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mosquito Vectors/virology , Mutation , Selection, Genetic , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus/chemistry , Zika Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL