Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38159565

ABSTRACT

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Subject(s)
Catalytic Domain , Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Humans , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
2.
Nature ; 625(7993): 119-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030728

ABSTRACT

Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention1,2. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297-391) into paired helical filaments of Alzheimer's disease or into filaments of chronic traumatic encephalopathy3. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302-316. Nuclear magnetic resonance indicates that the same residues adopt rigid, ß-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.


Subject(s)
Alzheimer Disease , Amyloid , Chronic Traumatic Encephalopathy , Neurofibrillary Tangles , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Cryoelectron Microscopy , Neurofibrillary Tangles/chemistry , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/ultrastructure , tau Proteins/chemistry , tau Proteins/metabolism , tau Proteins/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Time Factors
3.
Genes Dev ; 35(21-22): 1510-1526, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34593603

ABSTRACT

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3' end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3' end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3' end processing machinery are required to coordinate cleavage and polyadenylation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Polyadenylation , RNA Precursors/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
4.
Cell ; 154(1): 169-84, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23827681

ABSTRACT

Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1' and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Ovarian Neoplasms/enzymology , Ubiquitination , Catalysis , Catalytic Domain , Crystallography, X-Ray , Endopeptidases/genetics , Female , Humans , Models, Molecular , Ovarian Neoplasms/metabolism , Protein Structure, Tertiary , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Ubiquitins/metabolism
5.
Mol Cell ; 74(3): 436-451.e7, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30926242

ABSTRACT

The evolutionarily related deubiquitinating enzymes (DUBs) USP25 and USP28 comprise an identical overall domain architecture but are functionally non-redundant: USP28 stabilizes c-MYC and other nuclear proteins, and USP25 regulates inflammatory TRAF signaling. We here compare molecular features of USP25 and USP28. Active enzymes form distinctively shaped dimers, with a dimerizing insertion spatially separating independently active catalytic domains. In USP25, but not USP28, two dimers can form an autoinhibited tetramer, where a USP25-specific, conserved insertion sequence blocks ubiquitin binding. In full-length enzymes, a C-terminal domain with a previously unknown fold has no impact on oligomerization, but N-terminal regions affect the dimer-tetramer equilibrium in vitro. We confirm oligomeric states of USP25 and USP28 in cells and show that modulating oligomerization affects substrate stabilization in accordance with in vitro activity data. Our work highlights how regions outside of the catalytic domain enable a conceptually intriguing interplay of DUB oligomerization and activity.


Subject(s)
Inflammation/genetics , Protein Conformation , Ubiquitin Thiolesterase/genetics , Amino Acid Sequence/genetics , Catalytic Domain/genetics , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Humans , Inflammation/pathology , Mutation/genetics , Protein Binding/genetics , Protein Domains/genetics , Protein Multimerization/genetics , Proto-Oncogene Proteins c-myb/chemistry , Proto-Oncogene Proteins c-myb/genetics , Signal Transduction/genetics , Substrate Specificity , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Ubiquitin/genetics , Ubiquitin Thiolesterase/chemistry
6.
Nature ; 587(7834): 495-498, 2020 11.
Article in English | MEDLINE | ID: mdl-32908308

ABSTRACT

Influenza A virus causes millions of severe cases of disease during annual epidemics. The most abundant protein in influenza virions is matrix protein 1 (M1), which mediates virus assembly by forming an endoskeleton beneath the virus membrane1. The structure of full-length M1, and how it oligomerizes to mediate the assembly of virions, is unknown. Here we determine the complete structure of assembled M1 within intact virus particles, as well as the structure of M1 oligomers reconstituted in vitro. We find that the C-terminal domain of M1 is disordered in solution but can fold and bind in trans to the N-terminal domain of another M1 monomer, thus polymerizing M1 into linear strands that coat the interior surface of the membrane of the assembling virion. In the M1 polymer, five histidine residues-contributed by three different monomers of M1-form a cluster that can serve as the pH-sensitive disassembly switch after entry into a target cell. These structures therefore reveal mechanisms of influenza virus assembly and disassembly.


Subject(s)
Cryoelectron Microscopy , Influenza A Virus, H3N2 Subtype/chemistry , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/ultrastructure , Animals , Dogs , HEK293 Cells , Histidine , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/ultrastructure , Madin Darby Canine Kidney Cells , Models, Molecular , Viral Matrix Proteins/metabolism , Virion/chemistry , Virion/metabolism , Virion/ultrastructure
7.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27591049

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Subject(s)
NF-kappa B/chemistry , Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Deubiquitinating Enzyme CYLD , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Humans , Immunity, Innate , Kinetics , Molecular Docking Simulation , NF-kappa B/genetics , NF-kappa B/immunology , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteins/genetics , Proteins/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Substrate Specificity , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155117

ABSTRACT

Wnt signals bind to Frizzled receptors to trigger canonical and noncanonical signaling responses that control cell fates during animal development and tissue homeostasis. All Wnt signals are relayed by the hub protein Dishevelled. During canonical (ß-catenin-dependent) signaling, Dishevelled assembles signalosomes via dynamic head-to-tail polymerization of its Dishevelled and Axin (DIX) domain, which are cross-linked by its Dishevelled, Egl-10, and Pleckstrin (DEP) domain through a conformational switch from monomer to domain-swapped dimer. The domain-swapped conformation of DEP masks the site through which Dishevelled binds to Frizzled, implying that DEP domain swapping results in the detachment of Dishevelled from Frizzled. This would be incompatible with noncanonical Wnt signaling, which relies on long-term association between Dishevelled and Frizzled. It is therefore likely that DEP domain swapping is differentially regulated during canonical and noncanonical Wnt signaling. Here, we use NMR spectroscopy and cell-based assays to uncover intermolecular contacts in the DEP dimer that are essential for its stability and for Dishevelled function in relaying canonical Wnt signals. These contacts are mediated by an intrinsically structured sequence spanning a conserved phosphorylation site upstream of the DEP domain that serves to clamp down the swapped N-terminal α-helix onto the structural core of a reciprocal DEP molecule in the domain-swapped configuration. Mutations of this phosphorylation site and its cognate surface on the reciprocal DEP core attenuate DEP-dependent dimerization of Dishevelled and its canonical signaling activity in cells without impeding its binding to Frizzled. We propose that phosphorylation of this crucial residue could be employed to switch off canonical Wnt signaling.


Subject(s)
Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Conserved Sequence , Dishevelled Proteins/genetics , Humans , Models, Molecular , Mutation/genetics , Phosphorylation , Protein Domains , Protein Multimerization , Protein Stability , Serine/metabolism , Structure-Activity Relationship , Thermodynamics , Wnt Signaling Pathway
9.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34013668

ABSTRACT

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Subject(s)
Cell Cycle Proteins , Kinetochores , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Kinetochores/metabolism , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Phosphorylation , Signal Transduction , Spindle Apparatus/metabolism
10.
Nature ; 552(7683): 51-56, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29160309

ABSTRACT

Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.


Subject(s)
Pediculus/enzymology , Protein Kinases/chemistry , Protein Kinases/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Mitophagy , Models, Molecular , Mutation , Phosphorylation , Protein Kinases/genetics , Protein Kinases/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology
11.
Mol Cell ; 58(1): 95-109, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25752577

ABSTRACT

Protein ubiquitination regulates many cellular processes via attachment of structurally and functionally distinct ubiquitin (Ub) chains. Several atypical chain types have remained poorly characterized because the enzymes mediating their assembly and receptors with specific binding properties have been elusive. We found that the human HECT E3 ligases UBE3C and AREL1 assemble K48/K29- and K11/K33-linked Ub chains, respectively, and can be used in combination with DUBs to generate K29- and K33-linked chains for biochemical and structural analyses. Solution studies indicate that both chains adopt open and dynamic conformations. We further show that the N-terminal Npl4-like zinc finger (NZF1) domain of the K29/K33-specific deubiquitinase TRABID specifically binds K29/K33-linked diUb, and a crystal structure of this complex explains TRABID specificity and suggests a model for chain binding by TRABID. Our work uncovers linkage-specific components in the Ub system for atypical K29- and K33-linked Ub chains, providing tools to further understand these unstudied posttranslational modifications.


Subject(s)
Endopeptidases/chemistry , Lysine/chemistry , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
Nature ; 538(7625): 402-405, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27732584

ABSTRACT

The post-translational modification of proteins with polyubiquitin regulates virtually all aspects of cell biology. Eight distinct chain linkage types co-exist in polyubiquitin and are independently regulated in cells. This 'ubiquitin code' determines the fate of the modified protein. Deubiquitinating enzymes of the ovarian tumour (OTU) family regulate cellular signalling by targeting distinct linkage types within polyubiquitin, and understanding their mechanisms of linkage specificity gives fundamental insights into the ubiquitin system. Here we reveal how the deubiquitinase Cezanne (also known as OTUD7B) specifically targets Lys11-linked polyubiquitin. Crystal structures of Cezanne alone and in complex with monoubiquitin and Lys11-linked diubiquitin, in combination with hydrogen-deuterium exchange mass spectrometry, enable us to reconstruct the enzymatic cycle in great detail. An intricate mechanism of ubiquitin-assisted conformational changes activates the enzyme, and while all chain types interact with the enzymatic S1 site, only Lys11-linked chains can bind productively across the active site and stimulate catalytic turnover. Our work highlights the plasticity of deubiquitinases and indicates that new conformational states can occur when a true substrate, such as diubiquitin, is bound at the active site.


Subject(s)
Deubiquitinating Enzymes/metabolism , Endopeptidases/metabolism , Lysine/metabolism , Polyubiquitin/metabolism , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Deuterium Exchange Measurement , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Activation , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Substrate Specificity , Ubiquitination , Ubiquitins/metabolism
13.
Mol Cell ; 54(3): 335-48, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24726323

ABSTRACT

The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked "linear" Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types.


Subject(s)
Endopeptidases/chemistry , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Endopeptidases/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Structure, Secondary , Ubiquitin-Protein Ligases/metabolism
14.
Nucleic Acids Res ; 48(18): 10313-10328, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32976585

ABSTRACT

Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.


Subject(s)
Antigens, Neoplasm/ultrastructure , Nuclear Proteins/ultrastructure , RNA-Binding Proteins/chemistry , Transcription, Genetic , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Crystallography, X-Ray , DNA Transposable Elements/genetics , Epigenesis, Genetic/genetics , Gene Silencing , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Aggregates/genetics , Protein Binding/genetics , Protein Conformation, alpha-Helical , Protein Domains/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/ultrastructure , Viruses/genetics
15.
Angew Chem Int Ed Engl ; 60(19): 10919-10927, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33616271

ABSTRACT

Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII (η6 -arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non-biological ligand. Tandem mass spectrometry and 19 F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein-derived ligands. By introduction of ruthenium cofactors into a 4-helical bundle, transfer hydrogenation catalysts were generated that displayed a 35-fold rate increase when compared to the respective small molecule reaction in solution.


Subject(s)
Metalloproteins/metabolism , Organometallic Compounds/chemistry , Ruthenium/chemistry , Catalysis , Fluorine , Hydrogenation , Ligands , Magnetic Resonance Spectroscopy , Metalloproteins/chemistry , Molecular Structure , Organometallic Compounds/metabolism , Ruthenium/metabolism
16.
Mol Cell ; 48(3): 329-42, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23022382

ABSTRACT

Autophagy protects cellular homeostasis by capturing cytosolic components and invading pathogens for lysosomal degradation. Autophagy receptors target cargo to autophagy by binding ATG8 on autophagosomal membranes. The expansion of the ATG8 family in higher eukaryotes suggests that specific interactions with autophagy receptors facilitate differential cargo handling. However, selective interactors of ATG8 orthologs are unknown. Here we show that the selectivity of the autophagy receptor NDP52 for LC3C is crucial for innate immunity since cells lacking either protein cannot protect their cytoplasm against Salmonella. LC3C is required for antibacterial autophagy because in its absence the remaining ATG8 orthologs do not support efficient antibacterial autophagy. Structural analysis revealed that the selectivity of NDP52 for LC3C is conferred by a noncanonical LIR, in which lack of an aromatic residue is balanced by LC3C-specific interactions. Our report illustrates that specificity in the interaction between autophagy receptors and autophagy machinery is of functional importance to execute selective autophagy.


Subject(s)
Autophagy , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Salmonella/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Blotting, Western , Crystallography, X-Ray , Cytoplasm/metabolism , Cytoplasm/microbiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Microscopy, Fluorescence , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Models, Molecular , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding , Protein Structure, Tertiary , RNA Interference , Salmonella/classification , Salmonella typhimurium/metabolism , Sequence Homology, Amino Acid , Species Specificity
17.
Biochemistry ; 58(29): 3144-3154, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31260268

ABSTRACT

The c-MYC transcription factor is a master regulator of cell growth and proliferation and is an established target for cancer therapy. This basic helix-loop-helix Zip protein forms a heterodimer with its obligatory partner MAX, which binds to DNA via the basic region. Considerable research efforts are focused on targeting the heterodimerization interface and the interaction of the complex with DNA. The only available crystal structure is that of a c-MYC:MAX complex artificially tethered by an engineered disulfide linker and prebound to DNA. We have carried out a detailed structural analysis of the apo form of the c-MYC:MAX complex, with no artificial linker, both in solution using nuclear magnetic resonance (NMR) spectroscopy and by X-ray crystallography. We have obtained crystal structures in three different crystal forms, with resolutions between 1.35 and 2.2 Å, that show extensive helical structure in the basic region. Determination of the α-helical propensity using NMR chemical shift analysis shows that the basic region of c-MYC and, to a lesser extent, that of MAX populate helical conformations. We have also assigned the NMR spectra of the c-MYC basic helix-loop-helix Zip motif in the absence of MAX and showed that the basic region has an intrinsic helical propensity even in the absence of its dimerization partner. The presence of helical structure in the basic regions in the absence of DNA suggests that the molecular recognition occurs via a conformational selection rather than an induced fit. Our work provides both insight into the mechanism of DNA binding and structural information to aid in the development of MYC inhibitors.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Crystallography, X-Ray/methods , DNA-Binding Proteins/chemistry , DNA/chemistry , Helix-Loop-Helix Motifs/physiology , Magnetic Resonance Spectroscopy/methods , Repressor Proteins/chemistry , Transcription Factors/chemistry , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chickens , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Protein Structure, Secondary , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
J Biol Chem ; 293(24): 9210-9222, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29695507

ABSTRACT

Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding.


Subject(s)
RNA, Fungal/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Binding Sites , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , RNA, Fungal/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Schizosaccharomyces/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Substrate Specificity , mRNA Cleavage and Polyadenylation Factors/chemistry
19.
EMBO J ; 34(3): 307-25, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25527291

ABSTRACT

The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which ß5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.


Subject(s)
Phosphoproteins/metabolism , Polyubiquitin/metabolism , Protein Multimerization/physiology , Ubiquitination/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Allosteric Regulation/physiology , Endopeptidases/genetics , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Hydrolysis , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phosphoproteins/genetics , Phosphorylation/physiology , Polyubiquitin/genetics , Protein Structure, Tertiary , Serine/genetics , Serine/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
20.
Genes Dev ; 25(9): 917-29, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21536732

ABSTRACT

Removal of the assembly factor eukaryotic initiation factor 6 (eIF6) is critical for late cytoplasmic maturation of 60S ribosomal subunits. In mammalian cells, the current model posits that eIF6 release is triggered following phosphorylation of Ser 235 by activated protein kinase C. In contrast, genetic studies in yeast indicate a requirement for the ortholog of the SBDS (Shwachman-Bodian-Diamond syndrome) gene that is mutated in the inherited leukemia predisposition disorder Shwachman-Diamond syndrome (SDS). Here, by isolating late cytoplasmic 60S ribosomal subunits from Sbds-deleted mice, we show that SBDS and the GTPase elongation factor-like 1 (EFL1) directly catalyze eIF6 removal in mammalian cells by a mechanism that requires GTP binding and hydrolysis by EFL1 but not phosphorylation of eIF6 Ser 235. Functional analysis of disease-associated missense variants reveals that the essential role of SBDS is to tightly couple GTP hydrolysis by EFL1 on the ribosome to eIF6 release. Furthermore, complementary NMR spectroscopic studies suggest unanticipated mechanistic parallels between this late step in 60S maturation and aspects of bacterial ribosome disassembly. Our findings establish a direct role for SBDS and EFL1 in catalyzing the translational activation of ribosomes in all eukaryotes, and define SDS as a ribosomopathy caused by uncoupling GTP hydrolysis from eIF6 release.


Subject(s)
Eukaryotic Initiation Factors/metabolism , Guanosine Triphosphate/metabolism , Ribosomes/pathology , Animals , Bone Marrow Diseases/genetics , Bone Marrow Diseases/physiopathology , Catalysis , Cells, Cultured , Disease Models, Animal , Eukaryotic Initiation Factors/genetics , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/physiopathology , Humans , Hydrolysis , Lipomatosis , Liver/pathology , Mice , Mice, Inbred C57BL , Models, Molecular , Mutation , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic , Shwachman-Diamond Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL