Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Methods ; 20(11): 1769-1779, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37919419

ABSTRACT

Recent advancements in single-cell technologies allow characterization of experimental perturbations at single-cell resolution. While methods have been developed to analyze such experiments, the application of a strict causal framework has not yet been explored for the inference of treatment effects at the single-cell level. Here we present a causal-inference-based approach to single-cell perturbation analysis, termed CINEMA-OT (causal independent effect module attribution + optimal transport). CINEMA-OT separates confounding sources of variation from perturbation effects to obtain an optimal transport matching that reflects counterfactual cell pairs. These cell pairs represent causal perturbation responses permitting a number of novel analyses, such as individual treatment-effect analysis, response clustering, attribution analysis, and synergy analysis. We benchmark CINEMA-OT on an array of treatment-effect estimation tasks for several simulated and real datasets and show that it outperforms other single-cell perturbation analysis methods. Finally, we perform CINEMA-OT analysis of two newly generated datasets: (1) rhinovirus and cigarette-smoke-exposed airway organoids, and (2) combinatorial cytokine stimulation of immune cells. In these experiments, CINEMA-OT reveals potential mechanisms by which cigarette-smoke exposure dulls the airway antiviral response, as well as the logic that governs chemokine secretion and peripheral immune cell recruitment.


Subject(s)
Cytokines , Motion Pictures
2.
J Surg Oncol ; 128(5): 790-802, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37435780

ABSTRACT

BACKGROUND AND OBJECTIVES: Surgery for metastatic gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) has not been well-studied. This retrospective cohort study describes patients in the United States with stage IV GEP-NEC and their survival outcomes segregated by surgery. METHODS: Patients diagnosed with stage IV GEP-NEC from 2004 to 2017 in the National Cancer Database were categorized into three groups: no surgery, primary site or metastatic site ("single-site") surgery, and primary site and metastatic site ("multisite") surgery. Factors associated with surgical treatment were identified, and risk-adjusted overall survival of each group was compared. RESULTS: Of 4171 patients included, 958 (23.0%) underwent single-site surgery and 374 (9.0%) underwent multisite surgery. The strongest predictor of surgery was primary tumor type. Compared with no surgery, the risk-adjusted mortality reduction associated with single-site surgery ranged from 63% for small bowel (HR = 0.37, 0.23-0.58, p < 0.001) NEC to 30% for colon and appendix NEC (HR = 0.70, 0.61-0.80, p < 0.001), while the mortality reduction associated with multisite surgery ranged from 77% for pancreas NEC (HR = 0.23, 0.17-0.33, p < 0.001) to 48% for colon and appendix NEC (HR = 0.52, 0.44-0.63, p < 0.001). CONCLUSIONS: We observed an association between extent of surgical intervention and overall survival for patients with stage IV GEP-NEC. Surgical resection should be further investigated as a treatment option for highly-selected patients with this aggressive disease.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , United States/epidemiology , Retrospective Studies , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Carcinoma, Neuroendocrine/surgery , Carcinoma, Neuroendocrine/pathology , Neuroendocrine Tumors/surgery , Neuroendocrine Tumors/pathology , Prognosis
3.
Appl Microbiol Biotechnol ; 106(1): 301-315, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34910238

ABSTRACT

N-glycosylation is an important posttranslational modification affecting the properties and quality of therapeutic proteins. Glycoengineering in yeast aims to produce proteins carrying human-compatible glycosylation, enabling the production of therapeutic proteins in yeasts. In this work, we demonstrate further development and characterization of a glycoengineering strategy in a Saccharomyces cerevisiae Δalg3 Δalg11 strain where a truncated Man3GlcNAc2 glycan precursor is formed due to a disrupted lipid-linked oligosaccharide synthesis pathway. We produced galactosylated complex-type and hybrid-like N-glycans by expressing a human galactosyltransferase fusion protein both with and without a UDP-glucose 4-epimerase domain from Schizosaccharomyces pombe. Our results showed that the presence of the UDP-glucose 4-epimerase domain was beneficial for the production of digalactosylated complex-type glycans also when extracellular galactose was supplied, suggesting that the positive impact of the UDP-glucose 4-epimerase domain on the galactosylation process can be linked to other processes than its catalytic activity. Moreover, optimization of the expression of human GlcNAc transferases I and II and supplementation of glucosamine in the growth medium increased the formation of galactosylated complex-type glycans. Additionally, we provide further characterization of the interfering mannosylation taking place in the glycoengineered yeast strain. KEY POINTS: • Glycoengineered Saccharomyces cerevisiae can form galactosylated N-glycans. • Genetic constructs impact the activities of the expressed glycosyltransferases. • Growth medium supplementation increases formation of target N-glycan structure.


Subject(s)
Saccharomyces cerevisiae Proteins , Schizosaccharomyces , Glycosylation , Humans , Polysaccharides , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
4.
J Am Soc Nephrol ; 32(8): 2083-2098, 2021 08.
Article in English | MEDLINE | ID: mdl-34330770

ABSTRACT

BACKGROUND: Post-transplantation diabetes mellitus (PTDM) might be preventable. METHODS: This open-label, multicenter randomized trial compared 133 kidney transplant recipients given intermediate-acting insulin isophane for postoperative afternoon glucose ≥140 mg/dl with 130 patients given short-acting insulin for fasting glucose ≥200 mg/dl (control). The primary end point was PTDM (antidiabetic treatment or oral glucose tolerance test-derived 2 hour glucose ≥200 mg/dl) at month 12 post-transplant. RESULTS: In the intention-to-treat population, PTDM rates at 12 months were 12.2% and 14.7% in treatment versus control groups, respectively (odds ratio [OR], 0.82; 95% confidence interval [95% CI], 0.39 to 1.76) and 13.4% versus 17.4%, respectively, at 24 months (OR, 0.71; 95% CI, 0.34 to 1.49). In the per-protocol population, treatment resulted in reduced odds for PTDM at 12 months (OR, 0.40; 95% CI, 0.16 to 1.01) and 24 months (OR, 0.54; 95% CI, 0.24 to 1.20). After adjustment for polycystic kidney disease, per-protocol ORs for PTDM (treatment versus controls) were 0.21 (95% CI, 0.07 to 0.62) at 12 months and 0.35 (95% CI, 0.14 to 0.87) at 24 months. Significantly more hypoglycemic events (mostly asymptomatic or mildly symptomatic) occurred in the treatment group versus the control group. Within the treatment group, nonadherence to the insulin initiation protocol was associated with significantly higher odds for PTDM at months 12 and 24. CONCLUSIONS: At low overt PTDM incidence, the primary end point in the intention-to-treat population did not differ significantly between treatment and control groups. In the per-protocol analysis, early basal insulin therapy resulted in significantly higher hypoglycemia rates but reduced odds for overt PTDM-a significant reduction after adjustment for baseline differences-suggesting the intervention merits further study.Clinical Trial registration number: NCT03507829.


Subject(s)
Diabetes Mellitus/prevention & control , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin, Isophane/therapeutic use , Kidney Transplantation/adverse effects , Adult , Aged , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/etiology , Female , Glycated Hemoglobin/metabolism , Guideline Adherence , Humans , Hyperglycemia/blood , Hyperglycemia/etiology , Hypoglycemia/chemically induced , Insulin Lispro/therapeutic use , Insulin, Isophane/adverse effects , Intention to Treat Analysis , Male , Middle Aged , Postoperative Care , Postoperative Period , Risk Factors , Sex Factors , Standard of Care , Time Factors
5.
EMBO J ; 35(13): 1452-64, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27220848

ABSTRACT

Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.


Subject(s)
DNA, Single-Stranded/metabolism , Histones/metabolism , Immunoglobulin Variable Region/metabolism , Animals , Cell Line , Chickens , Cytidine Deaminase/metabolism
6.
Glycoconj J ; 37(2): 221-229, 2020 04.
Article in English | MEDLINE | ID: mdl-31792892

ABSTRACT

Fucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is attractive for dairy industries. The objective of this study was to characterize the glycosyl hydrolase family 29 α-fucosidase produced by Aspergillus niger and test its ability to transfucosylate lactose with a view towards potential industrial applications such as the valorization of the lactose side stream produced by dairy industry. In order to reduce costs and toxicity the use of free fucose instead of environmentally questionable fucose derivatives was studied. In contrast to earlier studies, a recombinantly produced A. niger α-fucosidase was utilized. Using pNP-fucose as substrate, the optimal pH for hydrolytic activity was determined to be 3.8. The optimal temperature for a 30-min reaction was 60 °C, and considering temperature stability, the optimal temperature for a 24-h reaction was defined as 45 °C For the same hydrolysis reaction, the kinetic values were calculated to be 0.385 mM for the KM and 2.8 mmol/(mg*h) for the Vmax. Transfucosylation of lactose occurred at high substrate concentrations when reaction time was elongated to several days. The structure of the product trisaccharide was defined as 1-fucosyllactose, where fucose is α-linked to the anomeric carbon of the ß-glucose moiety of lactose. Furthermore, the enzyme was able to hydrolyze its own transfucosylation product and 2'-fucosyllactose but only poorly 3-fucosyllactose. As a conclusion, α-fucosidase from A. niger can transfucosylate lactose using free fucose as substrate producing a novel non-reducing 1-fucosyllactose.


Subject(s)
Aspergillus niger/enzymology , Fungal Proteins/metabolism , alpha-L-Fucosidase/metabolism , Enzyme Stability , Fucose/analogs & derivatives , Fucose/metabolism , Lactose/analogs & derivatives , Lactose/metabolism , Substrate Specificity
7.
FEMS Yeast Res ; 20(1)2020 02 01.
Article in English | MEDLINE | ID: mdl-31922547

ABSTRACT

N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Immunoglobulin G/metabolism , Metabolic Engineering , Oligosaccharides/metabolism , Saccharomyces cerevisiae/metabolism , Glycosylation , Humans , Immunoglobulin G/genetics , Lipids/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Yeast ; 35(4): 331-341, 2018 04.
Article in English | MEDLINE | ID: mdl-29159981

ABSTRACT

The cellular changes induced by heterologous protein expression in the yeast Saccharomyces cerevisiae have been analysed on many levels and found to be significant. However, even though high-level protein production poses a metabolic burden, evaluation of the expression host at the level of the metabolome has often been neglected. We present a comparison of metabolite profiles of a wild-type strain with those of three strains producing recombinant antibody variants of increasing size and complexity: an scFv fragment, an scFv-Fc fusion protein and a full-length IgG molecule. Under producing conditions, all three recombinant strains showed a clear decrease in growth rate compared with the wild-type strain and the severity of the growth phenotype increased with size of the protein. The levels of 76 intracellular metabolites were determined using a targeted (semi) quantitative mass spectrometry based approach. Based on unsupervised and supervised multivariate analysis of metabolite profiles, together with pathway activity profiling, the recombinant strains were found to be significantly different from each other and from the wild-type strain. We observed the most prominent changes in metabolite levels for metabolites involved in amino acid and redox metabolism. Induction of the unfolded protein response was detected in all producing strains and is considered to be a contributing factor to the overall metabolic burden on the cells.


Subject(s)
Antibodies/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Bioreactors , Energy Metabolism/physiology , Metabolic Networks and Pathways , Metabolome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/immunology
9.
Glycoconj J ; 35(1): 31-40, 2018 02.
Article in English | MEDLINE | ID: mdl-28905280

ABSTRACT

Fucosylated oligosaccharides have an important role in maintaining a healthy immune system and homeostatic gut microflora. This study employed a commercial ß-galactosidase in the production of fucose-containing galacto-oligosaccharides (fGOS) from lactose and fucose. The production was optimized using experiment design and optimal conditions for a batch production in 3-liter scale. The reaction product was analyzed and the produced galactose-fucose disaccharides were purified. The structures of these disaccharides were determined using NMR and it was verified that one major product with the structure Galß1-3Fuc and two minor products with the structures Galß1-4Fuc and Galß1-2Fuc were formed. Additionally, the product composition was defined in more detail using several different analytical methods. It was concluded that the final product contained 42% total monosaccharides, 40% disaccharides and 18% of larger oligosaccharides. 290 µmol of fGOS was produced per gram of reaction mixture and 37% of the added fucose was bound to fGOS. The fraction of fGOS from total oligosaccharides was determined as 44%. This fGOS product could be used as a new putative route to deliver fucose to the intestine.


Subject(s)
Disaccharides/chemical synthesis , Fucose/analogs & derivatives , Galactose/analogs & derivatives , beta-Galactosidase/metabolism , Disaccharides/chemistry , Glycosylation , Oligosaccharides/chemistry
10.
FEMS Yeast Res ; 17(1)2017 01.
Article in English | MEDLINE | ID: mdl-27956492

ABSTRACT

Cost-effective manufacturing of biopharmaceuticals in non-mammalian hosts still requires tremendous efforts in strain development. In order to expedite identification of novel leads for strain engineering, we used a transposon-mutagenized yeast genomic DNA library to create a collection of Saccharomyces cerevisiae deletion strains expressing a full-length IgG antibody. Using a high-throughput screening, transformants with either significantly higher or lower IgG expression were selected. The integration site of the transposon in three of the selected strains was located by DNA sequencing. The inserted DNA lay within the VPS30 and TAR1 open reading frame, and upstream of the HEM13 open reading frame. The complete coding sequence of these genes was deleted in the wild-type strain background to confirm the IgG expression phenotypes. Production of recombinant antibody was increased 2-fold in the Δvps30 strain, but only mildly affected secretion levels in the Δtar1 strain. Remarkably, expression of endogenous yeast acid phosphatase was increased 1.7- and 2.4-fold in Δvps30 and Δtar1 strains. The study confirmed the power of genome-wide high-throughput screens for strain development and highlights the importance of using the target molecule during the screening process.


Subject(s)
Gene Deletion , Genes, Fungal , Immunoglobulin G/biosynthesis , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Transposable Elements , Genetic Testing , Immunoglobulin G/genetics , Industrial Microbiology/methods , Metabolic Engineering/methods , Mutagenesis, Insertional , Recombinant Proteins/genetics
11.
Glycoconj J ; 33(2): 189-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26983412

ABSTRACT

N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.


Subject(s)
Fungal Polysaccharides/biosynthesis , Oligosaccharides/biosynthesis , Saccharomyces cerevisiae/metabolism , Carbohydrate Conformation , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/genetics , Gene Deletion , Glycosylation , Humans , Kluyveromyces/genetics , Kluyveromyces/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Oligosaccharides/chemistry , Oligosaccharides/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Microb Cell Fact ; 15: 87, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27216259

ABSTRACT

BACKGROUND: The yeast Saccharomyces cerevisiae provides intriguing possibilities for synthetic biology and bioprocess applications, but its use is still constrained by cellular characteristics that limit the product yields. Considering the production of advanced biopharmaceuticals, a major hindrance lies in the yeast endoplasmic reticulum (ER), as it is not equipped for efficient and large scale folding of complex proteins, such as human antibodies. RESULTS: Following the example of professional secretory cells, we show that inducing an ER expansion in yeast by deleting the lipid-regulator gene OPI1 can improve the secretion capacity of full-length antibodies up to fourfold. Based on wild-type and ER-enlarged yeast strains, we conducted a screening of a folding factor overexpression library to identify proteins and their expression levels that enhance the secretion of antibodies. Out of six genes tested, addition of the peptidyl-prolyl isomerase CPR5 provided the most beneficial effect on specific product yield while PDI1, ERO1, KAR2, LHS1 and SIL1 had a mild or even negative effect to antibody secretion efficiency. Combining genes for ER enhancement did not induce any significant additional effect compared to addition of just one element. By combining the Δopi1 strain, with the enlarged ER, with CPR5 overexpression, we were able to boost the specific antibody product yield by a factor of 10 relative to the non-engineered strain. CONCLUSIONS: Engineering protein folding in vivo is a major task for biopharmaceuticals production in yeast and needs to be optimized at several levels. By rational strain design and high-throughput screening applications we were able to increase the specific secreted antibody yields of S. cerevisiae up to 10-fold, providing a promising strain for further process optimization and platform development for antibody production.


Subject(s)
Antibodies/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae/metabolism , Antibodies/chemistry , Antibodies/genetics , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Protein Folding , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Temperature
13.
Anal Bioanal Chem ; 408(13): 3651-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26968563

ABSTRACT

Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters.


Subject(s)
Acyl Coenzyme A/analysis , Carbon Isotopes/chemistry , Chromatography, Liquid/methods , Esters/chemistry , Cell Line, Tumor , Humans , Isotope Labeling
14.
Glycobiology ; 25(3): 252-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25488986

ABSTRACT

N-Glycosylation efficiency is a key parameter when studying components of the protein N-glycosylation pathway, but was recently also recognized as an important factor in the production of glycosylated proteins. We have developed a novel assay to quantify N-glycosylation efficiency of proteins. This assay is based on the secreted activity of yeast acid phosphatase, the proper folding and hence secretion of which is strongly dependent on its N-glycosylation status. The results show that the reporter yields a quantitative measure for protein N-glycosylation in yeast, which is in good agreement with classically used assay based on protein migration patterns on SDS-PAGE. However, the assay is less laborious and is adaptable to high-throughput screening approaches as exemplified.


Subject(s)
Acid Phosphatase/metabolism , High-Throughput Screening Assays/methods , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Glycosylation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
15.
Appl Microbiol Biotechnol ; 99(21): 9061-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26184977

ABSTRACT

One of the main limitations for heterologous protein production in the yeast Saccharomyces cerevisiae is the protein-folding capacity in the endoplasmic reticulum (ER). Accumulation of unfolded proteins triggers the unfolded protein response (UPR), which resolves the stress by increasing the capacity for protein folding and removal of unfolded proteins by the ER-associated degradation (ERAD) system. In order to analyze the influence of ERAD on production of a human IgG, we disrupted ERAD at different stages by deletion of the HTM1, YOS9, HRD1, HRD3, or UBC7 gene, with or without a disruption of the UPR by deletion of the IRE1 gene. All deletion strains were viable and did not exhibit a growth phenotype under normal growth conditions. Deletion of HTM1 resulted in a small increase in antibody production, whereas a small decrease in antibody production was observed in the Δhrd1, Δhrd3, and Δubc7 yeast strains, and a stronger decrease in the Δyos9 yeast strain. Deletion of the IRE1 gene had contrasting effects in the ERAD mutants, with a strongly decreased production in wild-type cells and partially reversed effects in combination with the Δhtm1 or the Δyos9 deletions. In order to study IgG clearance from the ER, an assay was developed using the inhibitory effect of glucose on the GAL1 promoter that is driving IgG expression. The Δyos9Δire1and Δhtm1Δire1 strains showed a delayed IgG clearance from the cells, showing that removal of components for the generation and recognition of the glycan signal needed for ERAD-mediated protein degradation might increase the IgG ER residence time.


Subject(s)
Endoplasmic Reticulum/metabolism , Immunoglobulin G/metabolism , Protein Folding , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Deletion , Humans , Immunoglobulin G/genetics , Microbial Viability , Proteolysis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Unfolded Protein Response
16.
J Biotechnol ; 387: 1-11, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38555020

ABSTRACT

The yeast Saccharomyces cerevisiae is a versatile cell factory used for manufacturing of a wide range of products, among them recombinant proteins. Protein folding is one of the rate-limiting processes and this shortcoming is often overcome by the expression of folding catalysts and chaperones in the endoplasmic reticulum (ER). In this work, we aimed to establish the impact of ER structure on cellular productivity. The reticulon proteins Rtn1p and Rtn2p, and Yop1p are membrane curvature inducing proteins that define the morphology of the ER and depletion of these proteins creates yeast cells with a higher ER sheet-to-tubule ratio. We created yeast strains with different combinations of deletions of Rtn1p, Rtn2p, and Yop1p coding genes in cells with a normal or expanded ER lumen. We identified strains that reached up to 2.2-fold higher antibody titres compared to the control strain. The expanded ER membrane reached by deletion of the lipid biosynthesis repressor OPI1 was essential for the increased productivity. The improved specific productivity was accompanied by an up to 2-fold enlarged ER surface area and a 1.5-fold increased cross-sectional cell area. Furthermore, the strains with enlarged ER displayed an attenuated unfolded protein response. These results underline the impact that ER structures have on productivity and support the notion that reprogramming subcellular structures belongs into the toolbox of synthetic biology.


Subject(s)
Endoplasmic Reticulum , Recombinant Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Unfolded Protein Response/genetics , Antibodies/metabolism , Antibodies/genetics
17.
JAMA Oncol ; 10(3): 342-351, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38175659

ABSTRACT

Importance: While immunotherapy is being used in an expanding range of clinical scenarios, the incidence of immunotherapy initiation at the end of life (EOL) is unknown. Objective: To describe patient characteristics, practice patterns, and risk factors concerning EOL-initiated (EOL-I) immunotherapy over time. Design, Setting, and Participants: Retrospective cohort study using a US national clinical database of patients with metastatic melanoma, non-small cell lung cancer (NSCLC), or kidney cell carcinoma (KCC) diagnosed after US Food and Drug Administration approval of immune checkpoint inhibitors for the treatment of each disease through December 2019. Mean follow-up was 13.7 months. Data analysis was performed from December 2022 to May 2023. Exposures: Age, sex, race and ethnicity, insurance, location, facility type, hospital volume, Charlson-Deyo Comorbidity Index, and location of metastases. Main Outcomes and Measures: Main outcomes were EOL-I immunotherapy, defined as immunotherapy initiated within 1 month of death, and characteristics of the cohort receiving EOL-I immunotherapy and factors associated with its use. Results: Overall, data for 242 371 patients were analyzed. The study included 20 415 patients with stage IV melanoma, 197 331 patients with stage IV NSCLC, and 24 625 patients with stage IV KCC. Mean (SD) age was 67.9 (11.4) years, 42.5% were older than 70 years, 56.0% were male, and 29.3% received immunotherapy. The percentage of patients who received EOL-I immunotherapy increased over time for all cancers. More than 1 in 14 immunotherapy treatments in 2019 were initiated within 1 month of death. Risk-adjusted patients with 3 or more organs involved in metastatic disease were 3.8-fold more likely (95% CI, 3.1-4.7; P < .001) to die within 1 month of immunotherapy initiation than those with lymph node involvement only. Treatment at an academic or high-volume center rather than a nonacademic or very low-volume center was associated with a 31% (odds ratio, 0.69; 95% CI, 0.65-0.74; P < .001) and 30% (odds ratio, 0.70; 95% CI, 0.65-0.76; P < .001) decrease in odds of death within a month of initiating immunotherapy, respectively. Conclusions and Relevance: Findings of this cohort study show that the initiation of immunotherapy at the EOL is increasing over time. Patients with higher metastatic burden and who were treated at nonacademic or low-volume facilities had higher odds of receiving EOL-I immunotherapy. Tracking EOL-I immunotherapy can offer insights into national prescribing patterns and serve as a harbinger for shifts in the clinical approach to patients with advanced cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Humans , Male , Aged , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Cohort Studies , Retrospective Studies , Lung Neoplasms/drug therapy , Healthcare Disparities , Immunotherapy , Death
18.
Front Oncol ; 14: 1336441, 2024.
Article in English | MEDLINE | ID: mdl-38380358

ABSTRACT

Background: Immunotherapy agents are approved for adjuvant treatment of stage III melanoma; however, evidence for survival benefit in early stage III disease is lacking. Current guidelines for adjuvant immunotherapy utilization in stage IIIA rely on clinician judgment, creating an opportunity for significant variation in prescribing patterns. This study aimed to characterize current immunotherapy practice variations and to compare patient outcomes for different prescribing practices in stage IIIA melanoma. Study design: Patients with melanoma diagnosed from 2015-2019 that met American Joint Committee on Cancer 8th edition criteria for stage IIIA and underwent resection were identified in the National Cancer Database. Multiple imputation by chained equations replaced missing values. Factors associated with receipt of adjuvant immunotherapy were identified. Multivariable Cox proportional hazards regression compared overall survival across groups. Results: Of 4,432 patients included in the study, 34% received adjuvant immunotherapy. Patients had lower risk-adjusted odds of receiving immunotherapy if they were treated at an academic center (OR=0.48, 95%CI=0.33-0.72, p<0.001 vs. community facility) or at a high-volume center (OR=0.69, 0.56-0.84, p<0.001 vs. low-volume). Immunotherapy receipt was not associated with risk-adjusted survival (p=0.095). Moreover, patients treated at high-volume centers experienced longer overall risk-adjusted survival than those treated at low-volume centers (HR=0.52, 0.29-0.93, p=0.030). Risk-adjusted survival trended toward being longer at academic centers than at community centers, but the difference was not statistically significant. Conclusion: Academic and high-volume centers utilize significantly less adjuvant immunotherapy in stage IIIA melanoma than community and low-volume centers without compromise in overall survival. These findings suggest that this population may benefit from more judicious immunotherapy utilization.

19.
J Lipid Res ; 54(6): 1678-1690, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23493750

ABSTRACT

Thromboxane A2 (TXA2) contributes to cardiovascular disease (CVD) by activating platelets and vascular constriction and proliferation. Despite their preclinical efficacy, pharmacological antagonists of the TXA2 receptor (TP), a G protein-coupled receptor, have not been clinically successful, raising interest in novel approaches to modifying TP function. We determined that disruption of a GxxxGxxxL helical interaction motif in the human TP's (α isoform) fifth transmembrane (TM) domain suppressed TP agonist-induced Gq signaling and TPα homodimerization, but not its cell surface expression, ligand affinity, or Gq association. Heterodimerization of TPα with the functionally opposing prostacyclin receptor (IP) shifts TPα to signal via the IP-Gs cascade contributing to prostacyclin's restraint of TXA2 function. Interestingly, disruption of the TPα-TM5 GxxxGxxxL motif did not modify either IP-TPα heterodimerization or its Gs-cAMP signaling. Our study indicates that distinct regions of the TPα receptor direct its homo- and heterodimerization and that homodimerization is necessary for normal TPα-Gq activation. Targeting the TPα-TM5 GxxxGxxxL domain may allow development of biased TPα homodimer antagonists that avoid suppression of IP-TPα heterodimer function. Such novel therapeutics may prove superior in CVD compared with nonselective suppression of all TP functions with TXA2 biosynthesis inhibitors or TP antagonists.


Subject(s)
Protein Multimerization/physiology , Receptors, Prostaglandin/metabolism , Receptors, Thromboxane/metabolism , Second Messenger Systems/physiology , Amino Acid Motifs , Cyclic AMP/genetics , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Protein Structure, Tertiary , Receptors, Epoprostenol , Receptors, Prostaglandin/genetics , Receptors, Thromboxane/genetics
20.
Appl Environ Microbiol ; 79(3): 997-1007, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204425

ABSTRACT

We describe a novel synthetic N-glycosylation pathway to produce recombinant proteins carrying human-like N-glycans in Saccharomyces cerevisiae, at the same time addressing glycoform and glycosylation efficiency. The Δalg3 Δalg11 double mutant strain, in which the N-glycans are not matured to their native high-mannose structure, was used. In this mutant strain, lipid-linked Man(3)GlcNAc(2) is built up on the cytoplasmic side of the endoplasmic reticulum, flipped by an artificial flippase into the ER lumen, and then transferred with high efficiency to the nascent polypeptide by a protozoan oligosaccharyltransferase. Protein-bound Man(3)GlcNAc(2) serves directly as a substrate for Golgi apparatus-targeted human N-acetylglucosaminyltransferases I and II. Our results confirmed the presence of the complex human-like N-glycan structure GlcNAc(2)Man(3)GlcNAc(2) on the secreted monoclonal antibody HyHEL-10. However, due to the interference of Golgi apparatus-localized mannosyltransferases, heterogeneity of N-linked glycans was observed.


Subject(s)
Metabolic Engineering , Metabolic Networks and Pathways/genetics , Polysaccharides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Gene Deletion , Glycosylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL