ABSTRACT
In humans, adverse physical and/or psychological traumas in childhood may predispose to developing psychiatric disorders in adulthood, including panic disorder. To model early life adversity in mice, we subjected male and female C57BL/6 J mice to a limited bedding and nesting (LBN) protocol between postnatal days 2-9 and investigated its effect on responsiveness to panicogenic challenges in adulthood. Panic-like escape behaviour was assessed during exposure to a high concentration of CO2 (20%) or in the beetle mania task (BMT), used to model respiratory and non-respiratory-related types of panic respectively. Neonatal exposure to LBN increased panic-like jumping during the CO2 challenge in male but not female mice. In an initial pharmacological validation of the BMT as a panic-inducing paradigm, undirected jumping and horizontal escape behaviours were reduced significantly by the panicolytic alprazolam (0.05 and 0.1mg.kg-1 i.p.) whilst tolerance to the close proximity of the aversive robo-beetle increased. The anxiolytic diazepam (1 mg.kg-1 i.p.) reduced only the number of horizontal escape attempts. In both sexes, previous experience of LBN significantly enhanced the number of horizontal escape episodes, indicating a pro-panic phenotype. Directed escape to access a safe ledge on the wall of the test arena, which was seen only in males, was also reduced significantly following LBN. These findings indicate that early life adversity produced by fragmented and unpredictable maternal care promotes a sex-specific increase in susceptibility to panic-like behaviour in adulthood. Whilst non-respiratory-related panic-like behaviour was enhanced in both sexes, females were resilient to respiratory-related challenges.
Subject(s)
Animals, Newborn , Mice, Inbred C57BL , Animals , Female , Male , Mice , Nesting Behavior/drug effects , Nesting Behavior/physiology , Panic/drug effects , Panic/physiology , Panic Disorder , Sex Characteristics , Alprazolam/pharmacology , Escape Reaction/drug effects , Escape Reaction/physiology , Diazepam/pharmacology , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Carbon Dioxide/pharmacologyABSTRACT
Anxiety-related diseases are more than twice as common in women than in men, and in women, symptoms may be exacerbated during the late luteal phase of the menstrual cycle. Despite this, most research into the underlying mechanisms, which drives drug development, have been carried out using male animals. In an effort to redress this imbalance, we compared responses of male and female Wistar rats during exposure to two unconditioned threatening stimuli that evoke panic-related defensive behaviours: confrontation with a predator (Bothrops alternatus) and acute exposure to hypoxia (7% O2 ). Threatened by venomous snake, male and female rats initially displayed defensive attention, risk assessment, and cautious interaction with the snake, progressing to defensive immobility to overt escape. Both males and females displayed higher levels of risk assessment but less interaction with the predator. They also spent more time in the burrow, displaying inhibitory avoidance, and more time engaged in defensive attention, and non-oriented escape behaviour. In females, anxiety-like behaviour was most pronounced in the oestrous and proestrus phases whereas panic-like behaviour was more pronounced during the dioestrus phase, particularly during late dioestrus. Acute hypoxia evoked panic-like behaviour (undirected jumping) in both sexes, but in females, responsiveness in late dioestrus was significantly greater than at other stages of the cycle. The results reveal that females respond in a qualitatively similar manner to males during exposure to naturally occurring threatening stimuli, but the responses of females is oestrous cycle dependent with a significant exacerbation of panic-like behaviour in the late dioestrus phase.
Subject(s)
Bothrops , Crotalinae , Animals , Female , Humans , Hypoxia , Male , Panic/physiology , Rats , Rats, WistarABSTRACT
Clinical and preclinical studies point towards anxiolytic actions of cannabidiol (CBD), but its effect in panic disorder has been less explored and few studies consider effects in females. We here compared the effect of CBD on the response of male and female rats and mice to a panicogenic challenge; exposure to low O2 (rats) or high CO2 (mice) paying attention in females to possible effects of estrous cycle phase. Male and female Sprague-Dawley rats and C57BL/6 J mice were exposed to 7% O2 for 5 min (rats) or 20% CO2 (mice) and escape behaviour, which has been associated with panic attacks, was quantified as undirected jumps towards the gas chamber's ceiling. The effect of pretreatment with CBD (1-10 mg kg-1 i.p. in rats or 10-60 mg kg-1 i.p. in mice) was tested. The results showed that low O2 (rats) or high CO2 (mice) evoked escape in both sexes. In female rats the response was estrous cycle-sensitive: females in late diestrus made significantly more jumps than females in proestrus. In female mice escape was not influenced by estrous cycle phase and CBD was panicolytic. In female rats CBD attenuated escape behaviour in late diestrus phase but not in proestrus. In male rats and mice CBD had no effect on escape behaviour. Therefore, CBD is panicolytic in female rats and mice but not in males. In rats the effect is estrous cycle-sensitive: rats were most responsive to CBD in late diestrus. In mice higher doses were required to elicit effects and estrous cycle had no effect.
ABSTRACT
A wealth of evidence associates disruptions of the parent-infant relationship (e.g. childhood parental loss or parental neglect) with the later appearance of panic disorder. In rodents, neonatal maternal separation and maternal deprivation (MD) are reported to increase the expression of anxiety-related defensive responses in adult animals. However, little is known about the long-term consequences of these early-life stressors in animal models of panic. We here investigated the effects of a single 24 h-episode of MD on post-natal day 11 (PND 11) in adult male Wistar rats submitted to two animal models that associate escape expression with panic attacks: the elevated T-maze and exposure to severe hypoxia (7% O2). We also investigated the involvement of serotonin (5-HT) in the observed changes. Although neonatal MD did not affect the behavioral responses measured in the elevated T-maze, it facilitated the expression of escape during hypoxia exposure, indicating a panicogenic-like effect. Pre-test administration of the 5-HT synthesis inhibitor, para-chlorophenylalanine (PCPA; 4 daily injections of 100 mg/kg) facilitated escape attempts in non-deprived animals during the hypoxia challenge, but did not interfere with the expression of this behavior in maternally-deprived rats. The levels of 5-HT1A receptors in key panic- and anxiety-associated areas, the dorsal periaqueductal gray and amygdala, respectively, were not different between previously deprived and non-deprived animals. Plasma corticosterone levels were significantly increased by hypoxia exposure, independently of the animals' previous stress condition or PCPA administration. Therefore, MD on PND 11 predisposes the adult animal to the panic-evoking effects of severe hypoxia, a stimulus also reported to induce panic attacks in humans. The lack of PCPA effect on the pro-escape consequence of MD may be indicative that 5-HT signaling is impaired in the stressed animal.
Subject(s)
Maternal Deprivation , Serotonin , Animals , Animals, Newborn , Escape Reaction , Fenclonine , Hypoxia , Male , Panic , Periaqueductal Gray , Rats , Rats, WistarABSTRACT
The antidepressant effect of ketamine has been widely acknowledged and the use of one of its enantiomers, S-ketamine (esketamine), has recently been approved for the clinical management of treatment-resistant depression. As with ketamine, the non-selective opioid receptor-interacting drug buprenorphine is reported to have antidepressant and anxiolytic properties in humans and rodents. Given the fact that antidepressant drugs are also first line treatment for panic disorder, it is surprising that the potential panicolytic effect of these compounds has been scarcely (ketamine), or not yet (buprenorphine) investigated. We here evaluated the effects of ketamine (the racemic mixture), esketamine, and buprenorphine in male Wistar rats submitted to a panicogenic challenge: acute exposure to hypoxia (7% O2). We observed that esketamine (20 mg/kg), but not ketamine, decreased the number of escape attempts made during hypoxia, and this effect could be observed even 7 days after the drug administration. A panicolytic-like effect was also observed with MK801, which like esketamine, antagonizes NMDA glutamate receptors. Buprenorphine (0.3 mg/kg) also impaired hypoxia-induced escape, an effect blocked by the non-selective opioid receptor antagonist naloxone, indicating an interaction with classical ligand sites, such as µ and kappa receptors, but not with nociception/orphanin FQ receptors. Altogether, the results suggest that esketamine and buprenorphine cause rapid-onset panicolytic-like effects, and may be alternatives for treating panic disorder, particularly in patients who are refractory to standard pharmacological treatment.
Subject(s)
Analgesics, Opioid/therapeutic use , Antidepressive Agents/pharmacology , Buprenorphine/therapeutic use , Hypoxia/drug therapy , Ketamine/pharmacology , Animals , Anti-Anxiety Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Humans , Locomotion , Male , Rats , Rats, WistarABSTRACT
INTRODUCTION AND OBJECTIVES: Oxytocin (OT) has been widely linked to positive social interactions, and there is great interest in OT as a therapy for a variety of neuropsychiatric conditions. Recent evidence also suggests that OT can play an important role in the mediation of anxiety-associated defensive responses, including a role for serotonin (5-HT) neurotransmission in this action. However, it is presently unknown whether OT additionally regulates the expression of panic-related behaviors, such as escape, by acting in the dorsal periaqueductal gray (dPAG), a key panic-regulating area. This study aimed to investigate the consequence of OT injection in the dPAG on escape expression and whether facilitation of 5-HT neurotransmission in this midbrain area is implicated in this action. METHODS: Male Wistar rats were injected with OT in the dPAG and tested for escape expression in the elevated T-maze (ETM) and dPAG electrical stimulation tests. Using the latter test, OT's effect was also investigated after previous intra-dPAG injection of the OT receptor antagonist atosiban, the preferential antagonists of 5-HT1A and 5-HT2A receptors, WAY-100635 and ketanserin, respectively, or systemic pretreatment with the 5-HT synthesis inhibitor p-CPA. RESULTS: OT impaired escape expression in the two tests used, suggesting a panicolytic-like effect. In the ETM, the peptide also facilitated inhibitory avoidance acquisition, indicating an anxiogenic effect. Previous administration of atosiban, WAY-100635, ketanserin, or p-CPA counteracted OT's anti-escape effect. CONCLUSIONS: OT and 5-HT in the dPAG interact in the regulation of panic- and anxiety-related defensive responses. These findings open new perspectives for the development of novel therapeutic strategies for the treatment of anxiety disorders.
Subject(s)
Anti-Anxiety Agents/pharmacology , Oxytocin/pharmacology , Panic/drug effects , Periaqueductal Gray/drug effects , Serotonin/physiology , Animals , Behavior, Animal/drug effects , Electric Stimulation , Electrodes, Implanted , Escape Reaction/drug effects , Male , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/drug effects , Receptors, Oxytocin/antagonists & inhibitors , Serotonin Antagonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Vasotocin/analogs & derivatives , Vasotocin/pharmacologyABSTRACT
Although the etiology of panic disorder (PD) remains elusive, accumulating evidence suggests a key role for the dorsal periaqueductal gray matter (dPAG). There is also evidence that this midbrain area is critically involved in mediation of the panicolytic effect of antidepressants, which with high potency benzodiazepines (e.g. alprazolam and clonazepam) are first line treatment for PD. Whether the dPAG is also implicated in the antipanic effect of the latter drugs is, however, still unknown. We here investigated the consequences of blocking GABAA or benzodiazepine receptors within the dPAG, with bicuculline (5 pmol) and flumazenil (80 nmol), respectively, on the panicolytic and anxiolytic effects of alprazolam (4 mg/kg). Microinjection of these antagonists fully blocked the anti-escape effect, considered as a panicolytic-like action, caused by a single systemic injection of alprazolam in male Wistar rats submitted to the elevated T-maze. These antagonists, however, did not affect the anxiolytic effect of the benzodiazepine on inhibitory avoidance acquisition and punished responding, measured in the elevated T-maze and Vogel conflict tests, respectively. Altogether, our findings show the involvement of GABAA/benzodiazepine receptors of the dPAG in the panicolytic, but not the anxiolytic effect caused by alprazolam. They also implicate the dPAG as the fulcrum of the effects of different classes of clinically effective antipanic drugs.
Subject(s)
Alprazolam/pharmacology , Panic/drug effects , Periaqueductal Gray/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Benzodiazepines/pharmacology , Bicuculline/pharmacology , Escape Reaction/drug effects , Flumazenil/pharmacology , GABA-A Receptor Antagonists/pharmacology , Male , Panic/physiology , Panic Disorder/drug therapy , Periaqueductal Gray/metabolism , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/pharmacologyABSTRACT
Exposure of rats to an environment with low O2 levels evokes a panic-like escape behavior and recruits the dorsal periaqueductal gray (dPAG), which is considered to be a key region in the pathophysiology of panic disorder. The neurochemical basis of this response is, however, currently unknown. We here investigated the role played by nitric oxide (NO) within the dPAG in mediation of the escape reaction induced by hypoxia exposure. The results showed that exposure of male Wistar rats to 7% O2 increased nitrite levels, a NO metabolite, in the dPAG but not in the amygdala or hypothalamus. Nitrite levels in the dPAG were correlated with the number of escape attempts during the hypoxia challenge. Injections of the NO synthesis inhibitor NPA, the NO-scavenger c- PTIO, or the NMDA receptor antagonist AP-7 into the dorsolateral column of the periaqueductal gray (dlPAG) inhibited escape expression during hypoxia, without affecting the rats' locomotion. Intra-dlPAG administration of c-PTIO had no effect on the escape response evoked by the elevated-T maze, a defensive behavior that has also been associated with panic attacks. Altogether, our results suggest that NO plays a critical role in mediation of the panic-like defensive response evoked by exposure to low O2 concentrations.
Subject(s)
Escape Reaction/physiology , Hypoxia/physiopathology , Nitric Oxide/physiology , Panic/physiology , Periaqueductal Gray/physiology , 2-Amino-5-phosphonovalerate/administration & dosage , 2-Amino-5-phosphonovalerate/analogs & derivatives , 2-Amino-5-phosphonovalerate/pharmacology , Amygdala/metabolism , Animals , Arginine/administration & dosage , Arginine/analogs & derivatives , Arginine/pharmacology , Escape Reaction/drug effects , Hypothalamus/metabolism , Male , Maze Learning/drug effects , Microinjections , Motor Activity/drug effects , Nitrites/metabolism , Periaqueductal Gray/metabolism , RatsABSTRACT
Exposure to elevated concentrations of CO2 or hypoxia has been widely used in psychiatric research as a panic provoking stimulus. However, the use of these respiratory challenges to model panic-like responses in experimental animals has been less straightforward. Little data is available, from behavioral and endocrine perspectives, to support the conclusion that a marked aversive situation, such as that experienced during panic attacks, was evoked in these animals. We here compared the behavioral responses of male CB57BL/6 mice during exposure to 20% CO2 or 7% O2 and its consequence on plasma levels of corticosterone. We also evaluated whether clinically-effective panicolytic drugs affect the behavioral responses expressed during CO2 exposure. The results showed that whereas hypoxia caused a marked reduction in locomotion, inhalation of CO2-enriched air evoked an active escape response, characterized by bouts of upward leaps directed to the border of the experimental cage, interpreted as escape attempts. Corticosterone levels were increased 30min after either of the respiratory challenges used, but it was higher in the hypoxia group. Chronic (21days), but not acute, treatment with fluoxetine or imipramine (5, 10 or 15mg/kg) or a single injection of alprazolam (0.025, 0.05 or 0.1mg/kg), but not of the anxiolytic diazepam (0.025, 0.05 or 0.1 and 1mg/kg) reduced the number of escape attempts, indicating a panicolytic-like effect. Altogether, the results suggest that whereas hypoxia increased anxiety, exposure to 20% CO2 evoked a panic-like state. The latter condition/test protocol seems to be a simple and validated model for studying in mice pathophysiological mechanisms and the screening of novel drugs for panic disorder.
Subject(s)
Carbon Dioxide/metabolism , Escape Reaction/physiology , Hypoxia/physiopathology , Panic/physiology , Alprazolam/pharmacology , Analysis of Variance , Animals , Carbon Dioxide/administration & dosage , Corticosterone/metabolism , Diazepam/pharmacology , Dose-Response Relationship, Drug , Escape Reaction/drug effects , Fluoxetine/pharmacology , Hypoxia/psychology , Imipramine/pharmacology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Panic/drug effects , Psychotropic Drugs/pharmacology , Random AllocationABSTRACT
The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective µ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.
Subject(s)
Hypothalamus/metabolism , Panic Disorder/metabolism , Panic/physiology , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Opioid, mu/metabolism , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Analgesics, Opioid/pharmacology , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Escape Reaction/drug effects , Escape Reaction/physiology , Hypothalamus/drug effects , Male , Naloxone/pharmacology , Panic/drug effects , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology , Somatostatin/analogs & derivatives , Somatostatin/pharmacologyABSTRACT
The elevated T-maze was developed to test the hypothesis that serotonin plays an opposing role in the regulation of defensive behaviors associated with anxiety and panic. Previous pharmacological exploitation of this test supports the association between inhibitory avoidance acquisition and escape expression with anxiety and fear/panic, respectively. In the present study, we extend the pharmacological validation of this test by investigating the effects of other putative or clinically effective anxiety- and panic-modulating drugs. The results showed that chronic, but not acute injection of the reversible monoamine oxidase-A inhibitor moclobemide (3, 10 and 30mg/kg) inhibited escape expression, indicating a panicolytic-like effect. The same effect was observed after either acute or chronic treatment with alprazolam (1, 2 and 4mg/kg), a high potency benzodiazepine. This drug also impaired inhibitory avoidance acquisition, suggesting an anxiolytic effect. On the other hand, subcutaneous administration of the 5-HT1D/1B receptor agonist sumatriptan (0.1, 0.5 and 2.5µg/kg) facilitated escape performance, indicating a panicogenic-like effect, while treatment with α-para-chlorophenylalanine (p-CPA; 4days i.p injections of 100mg/kg, or a single i.p injection of 300mg/kg), which caused marked 5-HT depletion in the amygdala and striatum, was without effect. Altogether, these results are in full agreement with the clinical effects of these compounds and offer further evidence that the elevated T-maze has broad predictive validity for the effects of anxiety- and panic-modulating drugs.