Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
Cell ; 184(21): 5266-5270, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562360

ABSTRACT

This year's Lasker Award recognizes Dieter Oesterhelt, Peter Hegemann, and Karl Deisseroth for their discovery of microbial opsins as light-activated ion conductors and the development of optogenetics using these proteins to regulate neural activity in awake, behaving animals. Optogenetics has revolutionized neuroscience and transformed our understanding of brain function.


Subject(s)
Bacteria/metabolism , Opsins/metabolism , Optogenetics , Animals , Bacteriorhodopsins/metabolism , Brain/metabolism , Channelrhodopsins/metabolism , Cyanobacteria/metabolism , Humans , Purple Membrane
2.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257028

ABSTRACT

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Subject(s)
Energy Metabolism , GABAergic Neurons/metabolism , Adipose Tissue, Brown/metabolism , Animals , Brain Mapping , Clozapine/analogs & derivatives , Clozapine/pharmacology , Dorsal Raphe Nucleus/metabolism , Gene Expression/drug effects , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Temperature , Thermogenesis
3.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753423

ABSTRACT

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Subject(s)
Appetite Regulation , Dorsal Raphe Nucleus/metabolism , Neurons/metabolism , Animals , Body Weight , Brain/physiology , Dorsal Raphe Nucleus/cytology , Electrophysiology , Fasting , Hunger , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Optogenetics
4.
Cell ; 184(22): 5687-5689, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34715024
5.
Cell ; 163(1): 84-94, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26406372

ABSTRACT

Leptin is a hormone produced by the adipose tissue that acts in the brain, stimulating white fat breakdown. We find that the lipolytic effect of leptin is mediated through the action of sympathetic nerve fibers that innervate the adipose tissue. Using intravital two-photon microscopy, we observe that sympathetic nerve fibers establish neuro-adipose junctions, directly "enveloping" adipocytes. Local optogenetic stimulation of sympathetic inputs induces a local lipolytic response and depletion of white adipose mass. Conversely, genetic ablation of sympathetic inputs onto fat pads blocks leptin-stimulated phosphorylation of hormone-sensitive lipase and consequent lipolysis, as do knockouts of dopamine ß-hydroxylase, an enzyme required for catecholamine synthesis. Thus, neuro-adipose junctions are necessary and sufficient for the induction of lipolysis in white adipose tissue and are an efferent effector of leptin action. Direct activation of sympathetic inputs to adipose tissues may represent an alternative approach to induce fat loss, circumventing central leptin resistance. PAPERCLIP.


Subject(s)
Adipose Tissue, White/metabolism , Leptin/metabolism , Lipolysis , Adipose Tissue, White/innervation , Animals , Humans , Mice , Phosphorylation , Receptors, Adrenergic, beta/metabolism , Sympathetic Nervous System/metabolism
6.
Cell ; 157(5): 1230-42, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24855954

ABSTRACT

The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.


Subject(s)
Green Fluorescent Proteins/analysis , Neurobiology/methods , Neuroimaging/methods , Neurons/cytology , Ribosomes/chemistry , Animals , Antibodies/genetics , Green Fluorescent Proteins/metabolism , Immunoprecipitation , Mice, Transgenic , Nucleus Accumbens/cytology , Protein Biosynthesis
7.
Genes Dev ; 35(9-10): 729-748, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33888560

ABSTRACT

The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.


Subject(s)
Adipocytes/cytology , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , 3T3-L1 Cells , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , Mediator Complex/genetics , Mice , Protein Binding/genetics , Protein Domains
8.
Nature ; 609(7928): 761-771, 2022 09.
Article in English | MEDLINE | ID: mdl-36071158

ABSTRACT

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Subject(s)
Brain Stem , Illness Behavior , Neurons , Animals , Anorexia/complications , Area Postrema/cytology , Area Postrema/metabolism , Brain Stem/cytology , Brain Stem/drug effects , Brain Stem/physiology , Illness Behavior/drug effects , Lethargy/complications , Lipopolysaccharides/pharmacology , Mice , Neurons/drug effects , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/metabolism
9.
Cell ; 151(5): 1126-37, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178128

ABSTRACT

The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.


Subject(s)
Brain/metabolism , Neurons/metabolism , Ribosomes/metabolism , Transcriptome , Animals , Brain/cytology , Fasting , Feeding Behavior , Hypothalamus/cytology , Hypothalamus/metabolism , Mice , Phosphorylation , Ribosomal Protein S6/metabolism
10.
Proc Natl Acad Sci U S A ; 119(43): e2211688119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252036

ABSTRACT

The nucleus accumbens (NAc) is a canonical reward center that regulates feeding and drinking but it is not known whether these behaviors are mediated by same or different neurons. We employed two-photon calcium imaging in awake, behaving mice and found that during the appetitive phase, both hunger and thirst are sensed by a nearly identical population of individual D1 and D2 neurons in the NAc that respond monophasically to food cues in fasted animals and water cues in dehydrated animals. During the consummatory phase, we identified three distinct neuronal clusters that are temporally correlated with action initiation, consumption, and cessation shared by feeding and drinking. These dynamic clusters also show a nearly complete overlap of individual D1 neurons and extensive overlap among D2 neurons. Modulating D1 and D2 neural activities revealed analogous effects on feeding versus drinking behaviors. In aggregate, these data show that a highly overlapping set of D1 and D2 neurons in NAc detect food and water reward and elicit concordant responses to hunger and thirst. These studies establish a general role of this mesolimbic pathway in mediating instinctive behaviors by controlling motivation-associated variables rather than conferring behavioral specificity.


Subject(s)
Hunger , Thirst , Animals , Calcium/metabolism , Mice , Nucleus Accumbens/physiology , Reward , Water/metabolism
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34426522

ABSTRACT

The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Alleles , Consanguinity , Exome , Gene Frequency/genetics , Genetic Drift , Genetics, Population/methods , Genome-Wide Association Study/methods , Genotype , Haplotypes/genetics , Human Migration/trends , Humans , Turkey/ethnology , Exome Sequencing/methods
12.
Cell ; 135(2): 240-9, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18835024

ABSTRACT

The increased white adipose tissue (WAT) mass associated with obesity is the result of both hyperplasia and hypertrophy of adipocytes. However, the mechanisms controlling adipocyte number are unknown in part because the identity of the physiological adipocyte progenitor cells has not been defined in vivo. In this report, we employ a variety of approaches, including a noninvasive assay for following fat mass reconstitution in vivo, to identify a subpopulation of early adipocyte progenitor cells (Lin(-):CD29(+):CD34(+):Sca-1(+):CD24(+)) resident in adult WAT. When injected into the residual fat pads of A-Zip lipodystrophic mice, these cells reconstitute a normal WAT depot and rescue the diabetic phenotype that develops in these animals. This report provides the identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo.


Subject(s)
Adipocytes, White/cytology , Stem Cells/cytology , Adipogenesis , Animals , Cell Proliferation , Female , Flow Cytometry , Lipodystrophy/metabolism , Mice , Mice, Transgenic , Obesity/metabolism
13.
Mol Psychiatry ; 26(11): 7029-7046, 2021 11.
Article in English | MEDLINE | ID: mdl-34099874

ABSTRACT

The subthalamic nucleus (STN) is a component of the basal ganglia and plays a key role to control movement and limbic-associative functions. STN modulation with deep brain stimulation (DBS) improves the symptoms of Parkinson's disease (PD) and obsessive-compulsive disorder (OCD) patients. However, DBS does not allow for cell-type-specific modulation of the STN. While extensive work has focused on elucidating STN functionality, the understanding of the role of specific cell types is limited. Here, we first performed an anatomical characterization of molecular markers for specific STN neurons. These studies revealed that most STN neurons express Pitx2, and that different overlapping subsets express Gabrr3, Ndnf, or Nos1. Next, we used optogenetics to define their roles in regulating locomotor and limbic functions in mice. Specifically, we showed that optogenetic photoactivation of STN neurons in Pitx2-Cre mice or of the Gabrr3-expressing subpopulation induces locomotor changes, and improves locomotion in a PD mouse model. In addition, photoactivation of Pitx2 and Gabrr3 cells induced repetitive grooming, a phenotype associated with OCD. Repeated stimulation prompted a persistent increase in grooming that could be reversed by fluoxetine treatment, a first-line drug therapy for OCD. Conversely, repeated inhibition of STNGabrr3 neurons suppressed grooming in Sapap3 KO mice, a model for OCD. Finally, circuit and functional mapping of STNGabrr3 neurons showed that these effects are mediated via projections to the globus pallidus/entopeduncular nucleus and substantia nigra reticulata. Altogether, these data identify Gabrr3 neurons as a key population in mediating the beneficial effects of STN modulation thus providing potential cellular targets for PD and OCD drug discovery.


Subject(s)
Obsessive-Compulsive Disorder , Parkinson Disease , Subthalamic Nucleus , Animals , Mice , Nerve Tissue Proteins , Neurons/physiology , Obsessive-Compulsive Disorder/therapy , Parkinson Disease/therapy
14.
Nature ; 531(7596): 647-50, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27007848

ABSTRACT

Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.


Subject(s)
Blood Glucose/metabolism , Eating/physiology , Magnetic Fields , Neurons/physiology , Radio Waves , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/physiology , Animals , Ferritins/genetics , Ferritins/metabolism , Glucagon/blood , Glucokinase/metabolism , Homeostasis , Hypoglycemia/metabolism , Insulin/blood , Integrases/metabolism , Mice , Neural Inhibition , Pancreatic Hormones/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Time Factors
15.
Am J Physiol Endocrinol Metab ; 320(2): E326-E332, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33284086

ABSTRACT

Interoceptive signals from gut and adipose tissue and sensory cues from the environment are integrated by hubs in the brain to regulate feeding behavior and maintain homeostatic control of body weight. In vivo neural recordings have revealed that these signals control the activity of multiple layers of hunger neurons and eating is not only the result of feedback correction to a set point, but can also be under the influence of anticipatory regulations. A series of recent technical developments have revealed how peripheral and sensory signals, in particular, from the gut are conveyed to the brain to integrate neural circuits. Here, we describe the mechanisms involved in gastrointestinal stimulation by nutrients and how these signals act on the hindbrain to generate motivated behaviors. We also consider the organization of multidirectional intra- and extrahypothalamic circuits and how this has created a framework for understanding neural control of feeding.


Subject(s)
Appetite Regulation , Brain/physiology , Gastrointestinal Tract/physiology , Animals , Body Weight/physiology , Eating/physiology , Feeding Behavior/physiology , Gastrointestinal Microbiome , Homeostasis/physiology , Humans , Hunger/physiology , Signal Transduction/physiology
16.
Mol Psychiatry ; 25(3): 666-679, 2020 03.
Article in English | MEDLINE | ID: mdl-29875477

ABSTRACT

Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.


Subject(s)
Feeding Behavior/physiology , Reinforcement, Psychology , Satiation/physiology , Animals , Brain/physiology , Conditioning, Classical/physiology , Cues , Eating/physiology , Food , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Motivation/physiology , Prefrontal Cortex/physiology
17.
Proc Natl Acad Sci U S A ; 115(26): E6039-E6047, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891714

ABSTRACT

Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Gene Expression Regulation , Leptin , PPAR gamma , Response Elements , Retinoid X Receptor alpha , Adipocytes/cytology , Adipose Tissue/cytology , Animals , Cell Line , Leptin/biosynthesis , Leptin/genetics , Mice , Mice, Obese
18.
Proc Natl Acad Sci U S A ; 115(29): E6900-E6909, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967172

ABSTRACT

Neurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.


Subject(s)
Arousal/physiology , Brain , Cerebrovascular Circulation/physiology , Neurons/metabolism , Nitric Oxide Synthase Type III , Signal Transduction/physiology , Animals , Brain/blood supply , Brain/cytology , Brain/metabolism , Genetic Loci , Mice , Mice, Transgenic , Neurons/cytology , Nitric Oxide Synthase Type III/biosynthesis , Nitric Oxide Synthase Type III/genetics
19.
Nature ; 493(7433): 532-6, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23235832

ABSTRACT

Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.


Subject(s)
Depression/physiopathology , Dopaminergic Neurons/metabolism , Mesencephalon/cytology , Social Behavior , Stress, Psychological/physiopathology , Animals , Depression/etiology , Food Preferences , Male , Mice , Neural Pathways , Nucleus Accumbens/physiology , Optogenetics , Phenotype , Prefrontal Cortex/physiology , Stress, Psychological/complications , Sucrose/administration & dosage , Time Factors , Ventral Tegmental Area/physiology
20.
J Neurosci ; 37(15): 4128-4144, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28283558

ABSTRACT

The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.


Subject(s)
Gene Expression Profiling/methods , Integrases/analysis , Mesencephalon/chemistry , Neurons/chemistry , Pseudorabies , Reward , Animals , Female , Integrases/metabolism , Male , Mesencephalon/anatomy & histology , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Pseudorabies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL