Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Dermatol ; 30(5): 705-709, 2021 05.
Article in English | MEDLINE | ID: mdl-33450110

ABSTRACT

With rising skin cancer rates and interest in preventing photoaging, adjuvants for sunscreens are in high demand. The potential of curcumin has been posited due to its anti-inflammatory, antioxidant and wound healing properties. In prior studies, curcumin decreased UV-induced inflammation, apoptotic changes in human keratinocytes and dermal fibroblasts, and the expression of matrix metalloproteinases. However, curcumin's utility has been hindered by poor aqueous solubility and rapid degradation in vivo. To overcome these limitations, we synthesized curcumin nanoparticles (curc-np), which offer sustained topical delivery and enhanced bioavailability. Curc-np and controls were applied to the skin of BALB/c mice prior to UVB irradiation. Twenty-four hours later, mice pretreated with curc-np showed less erythema, induration and scale compared to controls. Histopathology showed fewer sunburn cells, and TUNEL assay indicated decreased apoptosis in curc-np treated mice. Immunohistochemistry illustrated less p53 expression in skin pretreated with curc-np. Furthermore, cytokine analysis revealed significantly less IL-6 and significantly greater anti-inflammatory IL-10 in skin of curc-np-treated mice as compared to controls. Taken together, our results reinforce curcumin's established anti-inflammatory effects in the skin and highlight its potential as a photoprotective adjuvant when delivered through nanoparticles. Further investigation alongside sunscreens against UV-induced damage is warranted.


Subject(s)
Adjuvants, Immunologic/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Curcumin/pharmacokinetics , Keratinocytes/drug effects , Adjuvants, Immunologic/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Curcumin/administration & dosage , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Nanomedicine/methods , Nanoparticles/administration & dosage , Ultraviolet Rays/adverse effects
2.
J Pharmacol Exp Ther ; 373(2): 214-219, 2020 05.
Article in English | MEDLINE | ID: mdl-32144123

ABSTRACT

Sickle cell disease (SCD) is associated with overactive bladder (OAB). Detrusor overactivity, a component of OAB, is present in an SCD mouse, but the molecular mechanisms for this condition are not well-defined. We hypothesize that nitric oxide (NO)/ ras homolog gene family (Rho) A/Rho-associated kinase (ROCK) dysregulation is a mechanism for detrusor overactivity and that NO-releasing nanoparticles (NO-nps), a novel NO delivery system, may serve to treat this condition. Male adult SCD transgenic, combined endothelial NO synthases (eNOSs) and neuronal NOS (nNOS) gene-deficient (dNOS-/-), and wild-type (WT) mice were used. Empty nanoparticle or NO-np was injected into the bladder, followed by cystometric studies. The expression levels of phosphorylated eNOS (Ser-1177), protein kinase B (Akt) (Ser-473), nNOS (Ser-1412), and myosin phosphatase target subunit 1 (MYPT1) (Thr-696) were assessed in the bladder. SCD and dNOS-/- mice had a greater (P < 0.05) number of voiding and nonvoiding contractions compared with WT mice, and they were normalized by NO-np treatment. eNOS (Ser-1177) and AKT (Ser-473) phosphorylation were decreased (P < 0.05) in the bladder of SCD compared with WT mice and reversed by NO-np. Phosphorylated MYPT1, a marker of the RhoA/ROCK pathway, was increased (P < 0.05) in the bladder of SCD mice compared with WT and reversed by NO-np. nNOS phosphorylation on positive (Ser-1412) regulatory site was decreased (P < 0.05) in the bladder of SCD mice compared with WT and was not affected by NO-np. NO-nps did not affect any of the measured parameters in WT mice. In conclusion, dysregulation of NO and RhoA/ROCK pathways is associated with detrusor overactivity in SCD mice; NO-np reverses these molecular derangements in the bladder and decreases detrusor overactivity. SIGNIFICANCE STATEMENT: Voiding abnormalities commonly affect patients with sickle cell disease (SCD) but are problematic to treat. Clarification of the science for this condition in an animal model of SCD may lead to improved interventions for it. Our findings suggest that novel topical delivery of a vasorelaxant agent nitric oxide into the bladder of these mice corrects overactive bladder by improving deranged bladder physiology regulatory signaling.


Subject(s)
Nanoparticles/therapeutic use , Nitric Oxide/physiology , Urinary Bladder, Overactive/drug therapy , rho-Associated Kinases/physiology , Anemia, Sickle Cell/complications , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nitric Oxide Synthase/physiology , Phosphorylation , Signal Transduction/physiology , rhoA GTP-Binding Protein/physiology
3.
Nitric Oxide ; 103: 4-8, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32681986

ABSTRACT

The ongoing outbreak of COVID-19 has quickly become a daunting challenge to global health. In the absence of targeted therapy and a reported 5.5% case fatality rate in the United States, treatments preventing rapid cardiopulmonary failure are urgently needed. Clinical features, pathology and homology to better understood pathogens suggest that uncontrolled inflammation and a cytokine storm likely drive COVID-19's unrelenting disease process. Interventions that are protective against acute lung injury and ARDS can play a critical role for patients and health systems during this pandemic. Nitric oxide is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This article reviews the rationale for exogenous nitric oxide use for the pathogenesis of COVID-19 and highlights its potential for contributing to better clinical outcomes and alleviating the rapidly rising strain on healthcare capacity.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Nitric Oxide/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Administration, Inhalation , COVID-19 , Humans , Nitric Oxide/administration & dosage , Nitric Oxide Donors/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
4.
Nanomedicine ; 20: 102009, 2019 08.
Article in English | MEDLINE | ID: mdl-31085344

ABSTRACT

The emergence and widespread distribution of multi-drug resistant bacteria are considered as a major public health concern. The inabilities to curb severe infections due to antibiotic resistance have increased healthcare costs as well as patient morbidity and mortality. Bacterial biofilms formed by drug-resistant bacteria add additional challenges to treatment. This study describes a solgel based nanoparticle system loaded with garlic extract (GE-np) that exhibits: i) slow and sustained release of garlic components; ii) stabilization of the active components; and iii) significant enhancement of antimicrobial and antibiofilm activity relative to the free garlic extract. Also, GE-np were efficient in penetrating and disrupting the well-established methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Overall, the study suggests that GE-np might be a promising candidate for the treatment of chronic infections due to biofilm forming drug-resistant bacteria.


Subject(s)
Biofilms/drug effects , Garlic/chemistry , Nanoparticles/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Disulfides , Microbial Sensitivity Tests , Sulfinic Acids/pharmacology
5.
J Sex Med ; 15(5): 645-653, 2018 05.
Article in English | MEDLINE | ID: mdl-29699754

ABSTRACT

BACKGROUND: Curcumin, a naturally occurring anti-inflammatory compound, has shown promise in pre-clinical studies to treat erectile dysfunction (ED) associated with type-1 diabetes. However, poor bioavailability following oral administration limits its efficacy. The present study evaluated the potential of topical application of curcumin-loaded nanoparticles (curc-np) to treat ED in a rat model of type-2 diabetes (T2D). AIM: Determine if topical application of curc-np treats ED in a T2D rat model and modulates expression of inflammatory markers. METHODS: Curc-np (4 mg curcumin) or blank nanoparticles were applied every 2 days for 2 weeks to the shaved abdomen of 20-week-old Zucker diabetic fatty male rats (N = 5 per group). Lean Zucker diabetic fatty male rat controls were treated with blank nanoparticles (N = 5). Penetration of nanoparticles and curcumin release were confirmed by 2-photon fluorescence microscopy and histology. Erectile function was determined by measuring intracorporal pressure (ICP) normalized to systemic blood pressure (ICP/BP) following cavernous nerve stimulation. Corporal tissue was excised and reverse transcription and quantitative polymerase chain reaction used to determine expression of the following markers: nuclear factor (NF)-κß, NF-κß-activating protein (Nkap), NF erythroid 2-related factor-2, Kelch-like enoyl-CoA hydratase-associated protein-1, heme oxygenase-1 (HO-1), variable coding sequence-A1, phosphodiesterase-5, endothelial and neuronal nitric oxide synthase, Ras homolog gene family member A, and Rho-associated coiled-coil containing protein kinases-1 and -2. OUTCOMES: Erectile function by determination of ICP/BP and expression of molecular markers in corporal tissue by RT-qPCR. RESULTS: Nanoparticles penetrated the abdominal epidermis and persisted in hair follicles for 24 hours. Curc-np-treated animals exhibited higher average ICP/BP than animals treated with blank nanoparticles at all levels of stimulation and this was statistically significant (P < .05) at 0.75 mA. In corporal tissue, Nkap expression decreased 60% and heme oxygenase-1 expression increased 60% in curc-np- compared to blank nanoparticle-treated animals. ICP/BP values inversely correlated with Nkap and directly correlated with HO-1 expression levels. CLINICAL TRANSLATION: These studies demonstrate the potential for topical application of curc-np as a treatment for ED in T2D patients. CONCLUSIONS: The T2D animal model of ED represents a more prevalent disease than the more commonly studied type-1 diabetes model. Although there is improved erectile response in curc-np-treated animals, only at the lower levels of stimulation (0.75 mA) was this significant compared to the blank nanoparticle-treated animals, suggesting more studies are needed to optimize protocols and evaluate toxicity. Topical application of curc-np to a rat model of T2D can systemically deliver curcumin, treat ED, and modulate corporal expression of inflammatory markers. Draganski A, Tar MT, Villegas G, et al. Topically Applied Curcumin-Loaded Nanoparticles Treat Erectile Dysfunction in a Rat Model of Type-2 Diabetes. J Sex Med 2018;15:645-653.


Subject(s)
Curcumin/pharmacology , Diabetes Mellitus, Type 2/complications , Erectile Dysfunction/drug therapy , Erectile Dysfunction/etiology , Administration, Topical , Animals , Curcumin/administration & dosage , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Diabetes Mellitus, Experimental/physiopathology , Drug Delivery Systems , Endothelium/physiopathology , Erectile Dysfunction/physiopathology , Heme Oxygenase (Decyclizing)/metabolism , Male , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nanoparticles , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type I/metabolism , Penile Erection/drug effects , Penis/physiopathology , Protein Precursors/metabolism , Rats , Rats, Zucker , Salivary Proteins and Peptides/metabolism
6.
J Drugs Dermatol ; 17(7): 717-720, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30005092

ABSTRACT

Topical antimicrobials are the ideal mode of onychomycosis treatment for efficient drug delivery and avoidance of sytemic effects associated with oral medications. However, high treatment costs, tissue penetration limitations, and low cure rates have continued to pose major challenges. To capitalize on the progress made by topical efinaconazole solution, efinaconazole was combined with inexpensive, previously-characterized nitric oxide releasing nanoparticles (NO-np), which have been shown to offer sustained nitric oxide release over time and enhanced barrier penetration, while exerting broad spectrum antimicrobial and immunomodulating properties. NO-np were combined with efinaconazole in varying concentrations and applied against reference strains of Trichophyton rubrum using a checkerboard method. Results demonstrated synergism of NO-np+efinaconazole against T. rubrum, which is noteworthy given the barriers present in the topical treatment of onychomycosis, and the multiple potential benefits offered by NO-np. Overall, this study illustrates the untapped potential of nanotechnology in the treatment of disorders of the skin, hair, and nails where drug delivery remains a challenge. J Drugs Dermatol. 2018;17(7):717-720.


Subject(s)
Antifungal Agents/therapeutic use , Drug Carriers/chemistry , Onychomycosis/drug therapy , Trichophyton/drug effects , Administration, Topical , Animals , Antifungal Agents/economics , Antifungal Agents/pharmacology , Disease Models, Animal , Drug Liberation , Drug Synergism , Drug Therapy, Combination/economics , Drug Therapy, Combination/methods , Humans , Mice , Microbial Sensitivity Tests , Nanoparticles/chemistry , Naphthalenes/economics , Naphthalenes/therapeutic use , Nitric Oxide/economics , Nitric Oxide/pharmacology , Nitric Oxide/therapeutic use , Onychomycosis/microbiology , Permeability , Prescription Fees , Terbinafine , Treatment Outcome , Triazoles/economics , Triazoles/pharmacology , Triazoles/therapeutic use
7.
Biophys J ; 112(5): 881-891, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28297647

ABSTRACT

Despite extensive experimental and computational efforts to understand the nature of the hierarchy of protein fluctuations and the modulating role of the protein hydration shell, a detailed microscopic description of the dynamics of the protein-solvent system has yet to be achieved. By using single tryptophan protein phosphorescence, we follow site-specific internal protein dynamics over a broad temperature range and demonstrate three independent dynamic processes. Process I is seen at temperatures below the bulk solvent Tg, has low activation energy, and is likely due to fast vibrations that may be enabled by water mobility on the protein surface. Process II is observed above 170 K, with activation energy typical of ß relaxations in a glass; it has the same temperature dependence as fluctuations of hydration shell waters. Process III is observed at T > 200 K; it has super-Arrhenius temperature dependence and closely follows the primary relaxation of the bulk. The fluorescence of pyranine bound to the protein reports on the mobility of water in the hydration shell; it reveals a shift in emission spectra with increasing temperature, indicative of a changing H-bond network at the surface of the protein. These results support a model of solvent-slaved protein dynamics.


Subject(s)
Luminescent Measurements , Serum Albumin/chemistry , Solvents/chemistry , Tryptophan/chemistry , Humans , Temperature
8.
Anesth Analg ; 124(5): 1547-1554, 2017 05.
Article in English | MEDLINE | ID: mdl-28328758

ABSTRACT

BACKGROUND: Blood transfusion is used to treat acute anemia with the goal of increasing blood oxygen-carrying capacity as determined by hematocrit (Hct) and oxygen delivery (DO2). However, increasing Hct also increases blood viscosity, which may thus lower DO2 if the arterial circulation is a rigid hydraulic system as the resistance to blood flow will increase. The net effect of transfusion on DO2 in this system can be analyzed by using the relationship between Hct and systemic blood viscosity of circulating blood at the posttransfusion Hct to calculate DO2 and comparing this value with pretransfusion DO2. We hypothesized that increasing Hct would increase DO2 and tested our hypothesis by mathematically modeling DO2 in the circulation. METHODS: Calculations were made assuming a normal cardiac output (5 L/min) with degrees of anemia ranging from 5% to 80% Hct deficit. We analyzed the effects of transfusing 0.5 or more units of 300 cc of packed red blood cells (PRBCs) at an Hct of 65% and calculated microcirculatory DO2 after accounting for increased blood viscosity and assuming no change in blood pressure. Our model accounts for O2 diffusion out of the circulation before blood arriving to the nutritional circulation and for changes in blood flow velocity. The immediate posttransfusion DO2 was also compared with DO2 after the transient increase in volume due to transfusion has subsided. RESULTS: Blood transfusion of up to 3 units of PRBCs increased DO2 when Hct (or hemoglobin) was 60% lower than normal, but did not increase DO2 when administered before this threshold. CONCLUSIONS: After accounting for the effect of increasing blood viscosity on blood flow owing to increasing Hct, we found in a mathematical simulation of DO2 that transfusion of up to 3 units of PRBCs does not increase DO2, unless anemia is the result of an Hct deficit greater than 60%. Observations that transfusions occasionally result in clinical improvement suggest that other mechanisms possibly related to increased blood viscosity may compensate for the absence of increase in DO2.


Subject(s)
Blood Transfusion/methods , Blood Viscosity , Hematocrit , Oxygen/administration & dosage , Algorithms , Anemia/blood , Anemia/therapy , Blood Flow Velocity , Diffusion , Humans , Models, Theoretical , Oxygen Consumption
9.
Nanomedicine ; 13(7): 2267-2270, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28712918

ABSTRACT

Systemic therapies are preferred for treating dermal dermatophytosis due to inadequate penetration of topical agents. However, systemic antifungals are associated with off-target effects and limited tissue penetration, and antimicrobial resistance is a growing concern. To address this, we investigated topical nitric oxide-releasing nanoparticles (NO-np), which have been used against superficial fungal infections and bacterial abscesses. In addition to enhanced penetration and permeation conferred by nanoparticles, nitric oxide, a broad-spectrum multi-mechanistic antimicrobial agent, offers decreased likelihood of resistance development. In the current study, NO-np inhibited Trichophyton rubrum in vitro, as well as in a murine model of dermal dermatophytosis. In mice, NO-np reduced fungal burden after three days, with complete clearance after seven. Furthermore, NO-np decreased tissue IL-2, 6, 10 and TNFα, indicating earlier attenuation of the host inflammatory response and decreased tissue morbidity. Thus, topical NO-np represent an attractive alternative to systemic therapy against dermal T. rubrum infection.


Subject(s)
Antifungal Agents/therapeutic use , Nanoparticles/therapeutic use , Nitric Oxide/therapeutic use , Tinea/drug therapy , Trichophyton/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/administration & dosage , Disease Models, Animal , Inflammation/complications , Inflammation/drug therapy , Inflammation/microbiology , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nitric Oxide/administration & dosage , Tinea/complications , Tinea/microbiology
10.
J Biol Chem ; 290(1): 99-117, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25371199

ABSTRACT

The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits.


Subject(s)
Blood Substitutes/chemistry , Hemoglobins/chemistry , Nitric Oxide/chemistry , Nitrites/chemistry , Protein Subunits/chemistry , Animals , Blood Substitutes/isolation & purification , Hemoglobin A/chemistry , Hemoglobin A/isolation & purification , Hemoglobins/isolation & purification , Humans , Kinetics , Nitrite Reductases/chemistry , Nitrogen Oxides/chemistry , Oligochaeta/chemistry , Oxidation-Reduction , Protein Binding , Protein Subunits/isolation & purification , Solutions
11.
Nanomedicine ; 11(2): 283-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25461287

ABSTRACT

Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. FROM THE CLINICAL EDITOR: This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system.


Subject(s)
Immune System/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/administration & dosage , Nitric Oxide/administration & dosage , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Captopril/administration & dosage , Captopril/analogs & derivatives , Captopril/chemistry , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Glutathione/metabolism , Humans , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Nanoparticles/chemistry , Nitric Oxide/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
12.
Nanomedicine ; 11(1): 195-206, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25240595

ABSTRACT

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria. Curcumin's poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin. In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Infections/drug therapy , Curcumin/chemistry , Nanoparticles/chemistry , Animals , Burns/therapy , Cell Movement , Dose-Response Relationship, Drug , Drug Delivery Systems , Keratinocytes/cytology , Light , Methicillin-Resistant Staphylococcus aureus , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Nanomedicine/methods , Scattering, Radiation , Solubility , Stem Cells , Wound Healing , Zebrafish
13.
J Biol Chem ; 288(31): 22408-25, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23775069

ABSTRACT

In vitro, ferrous deoxy-hemes in hemoglobin (Hb) react with nitrite to generate nitric oxide (NO) through a nitrite reductase reaction. In vivo studies indicate Hb with nitrite can be a source of NO bioactivity. The nitrite reductase reaction does not appear to account fully for this activity because free NO is short lived especially within the red blood cell. Thus, the exporting of NO bioactivity both out of the RBC and over a large distance requires an additional mechanism. A nitrite anhydrase (NA) reaction in which N2O3, a potent S-nitrosating agent, is produced through the reaction of NO with ferric heme-bound nitrite has been proposed (Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., Jiang, A., He, X., Azarov, I., Seibert, R., Mehta, A., Patel, R., King, S. B., Hogg, N., Ghosh, A., Gladwin, M. T., and Kim-Shapiro, D. B. (2007) Nat. Chem. Biol. 3, 785-794) as a possible mechanism. Legitimate concerns, including physiological relevance and the nature of the mechanism, have been raised concerning the NA reaction. This study addresses these concerns demonstrating NO and nitrite with ferric hemes under near physiological conditions yield an intermediate having the properties of the purported NA heme-bound N2O3 intermediate. The results indicate that ferric heme sites, traditionally viewed as a source of potential toxicity, can be functionally significant, especially for partially oxygenated/partially met-R state Hb that arises from the NO dioxygenation reaction. In the presence of low levels of nitrite and either NO or a suitable reductant such as L-cysteine, these ferric heme sites can function as a generator for the formation of S-nitrosothiols such as S-nitrosoglutathione and, as such, should be considered as a source of RBC-derived and exportable bioactive NO.


Subject(s)
Hemoglobins/metabolism , S-Nitrosothiols/metabolism , Chromatography, High Pressure Liquid , Fluorescence , Hemoglobins/chemistry , Humans , Mass Spectrometry , Molecular Conformation , S-Nitrosothiols/chemistry
14.
Nanotechnology ; 25(26): 265102, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24920392

ABSTRACT

Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg(-1)) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to increase O2 in tumors, enhancing the efficacy of radiation therapies.


Subject(s)
Capillary Permeability , Drug Delivery Systems/instrumentation , Erythrocytes/metabolism , Microvessels/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Oxygen/metabolism , Phenylurea Compounds/administration & dosage , Animals , Blood Chemical Analysis , Erythrocytes/chemistry , Hematocrit , Hemodynamics/drug effects , Hemoglobins/metabolism , Magnetic Fields , Male , Mesocricetus , Nanoparticles/ultrastructure , Phenylurea Compounds/chemistry
15.
Nanomedicine ; 10(1): 269-77, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23770066

ABSTRACT

Candida spp. infection in the context of burn wounds leads to invasive disease with a 14-70% mortality rate. Unfortunately, current administrations of AmB, an important therapeutic demonstrating minimal resistance, are only available via potentially cytotoxic IV infusions. In order to circumvent these sequelae, we investigated the efficacy of nanoparticle encapsulated AmB (AmB-np) as a topical therapeutic against Candida spp. (drug release equilibrated solubilized AmB [AmB-sol] included as control). Clinical strains demonstrated equal or enhanced killing efficacy with 72.4-91.1% growth reduction by 4 hours. AmB-nps resulted in statistically significant reduction of fungal biofilm metabolic activity ranging from 80% to 95% viability reduction (P<0.001). Using a murine full-thickness burn model, AmB-np exhibited a quicker efficiency in fungal clearance versus AmB-sol by day three, although wound healing rates were similar. These data support the concept that AmB-np can function as a topical antifungal in the setting of a burn wound. FROM THE CLINICAL EDITOR: The control of fungal infections with Candida species remains a challenge in the context of burn wounds. A nanoencapsulated topical amphotericin-B compound was studied in a murine model of full thickness burn injury, showing remarkable efficacy in controlling Candida infection. This may become a viable alternative to the potentially toxic intravenous formulations.


Subject(s)
Amphotericin B/administration & dosage , Antifungal Agents/administration & dosage , Burns/drug therapy , Wounds and Injuries/drug therapy , Administration, Topical , Amphotericin B/adverse effects , Amphotericin B/chemistry , Animals , Antifungal Agents/adverse effects , Antifungal Agents/chemistry , Burns/microbiology , Burns/pathology , Candida/drug effects , Candida/pathogenicity , Humans , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Wounds and Injuries/microbiology , Wounds and Injuries/pathology
16.
Am J Pathol ; 180(4): 1465-73, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22306734

ABSTRACT

Wound healing is a complex process that involves coordinated interactions between diverse immunological and biological systems. Long-term wounds remain a challenging clinical problem, affecting approximately 6 million patients per year, with a high economic impact. To exacerbate the problem, these wounds render the individual susceptible to life-threatening microbial infections. Because current therapeutic strategies have proved suboptimal, it is imperative to focus on new therapeutic approaches and the development of technologies for both short- and long-term wound management. In recent years, nitric oxide (NO) has emerged as a critical molecule in wound healing, with NO levels increasing rapidly after skin damage and gradually decreasing as the healing process progresses. In this study, we examined the effects of a novel NO-releasing nanoparticle technology on wound healing in mice. The results show that the NO nanoparticles (NO-np) significantly accelerated wound healing. NO-np modified leukocyte migration and increased tumor growth factor-ß production in the wound area, which subsequently promoted angiogenesis to enhance the healing process. By using human dermal fibroblasts, we demonstrate that NO-np increased fibroblast migration and collagen deposition in wounded tissue. Together, these data show that NO-releasing nanoparticles have the ability to modulate and accelerate wound healing in a pleiotropic manner.


Subject(s)
Collagen/metabolism , Drug Delivery Systems/methods , Fibroblasts/drug effects , Nanoparticles , Nitric Oxide/administration & dosage , Wound Healing/drug effects , Administration, Cutaneous , Animals , Cell Movement/drug effects , Cells, Cultured , Drug Evaluation, Preclinical/methods , Female , Fibroblasts/physiology , Humans , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic/drug effects , Neutrophil Infiltration/drug effects , Nitric Oxide/biosynthesis , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type II/metabolism , Real-Time Polymerase Chain Reaction/methods , Skin/blood supply , Skin/injuries , Skin/metabolism , Skin/pathology , Wound Healing/physiology
17.
Chem Phys ; 430: 88-97, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-24039330

ABSTRACT

Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and ß solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

18.
J Biol Chem ; 286(26): 23452-66, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21531715

ABSTRACT

Hemoglobin (Hb) E (ß-Glu26Lys) remains an enigma in terms of its contributions to red blood cell (RBC) pathophysiological mechanisms; for example, EE individuals exhibit a mild chronic anemia, and HbE/ß-thalassemia individuals show a range of clinical manifestations, including high morbidity and death, often resulting from cardiac dysfunction. The purpose of this study was to determine and evaluate structural and functional consequences of the HbE mutation that might account for the pathophysiology. Functional studies indicate minimal allosteric consequence to both oxygen and carbon monoxide binding properties of the ferrous derivatives of HbE. In contrast, redox-sensitive reactions are clearly impacted as seen in the following: 1) the ∼2.5 times decrease in the rate at which HbE catalyzes nitrite reduction to nitric oxide (NO) relative to HbA, and 2) the accelerated rate of reduction of aquometHbE by L-cysteine (L-Cys). Sol-gel encapsulation studies imply a shift toward a higher redox potential for both the T and R HbE structures that can explain the origin of the reduced nitrite reductase activity of deoxyHbE and the accelerated rate of reduction of aquometHbE by cysteine. Deoxy- and CO HbE crystal structures (derived from crystals grown at or near physiological pH) show loss of hydrogen bonds in the microenvironment of ßLys-26 and no significant tertiary conformational perturbations at the allosteric transition sites in the R and T states. Together, these data suggest a model in which the HbE mutation, as a consequence of a relative change in redox properties, decreases the overall rate of Hb-mediated production of bioactive NO.


Subject(s)
Hemoglobin E/chemistry , Models, Molecular , Nitric Oxide/chemistry , Oxygen/chemistry , Allosteric Regulation/physiology , Catalysis , Crystallography, X-Ray , Hemoglobin E/genetics , Hemoglobin E/metabolism , Humans , Mutation , Nitric Oxide/metabolism , Oxidation-Reduction , Oxygen/metabolism , Structure-Activity Relationship
19.
Nitric Oxide ; 27(1): 32-9, 2012 Jun 30.
Article in English | MEDLINE | ID: mdl-22521791

ABSTRACT

The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αß dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αß Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.


Subject(s)
Antioxidants/chemistry , Haptoglobins/chemistry , Hemoglobins/chemistry , Nitrite Reductases/chemistry , Absorption , Antioxidants/metabolism , Carbon Monoxide , Haptoglobins/metabolism , Hemoglobins/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Nitrite Reductases/metabolism , Oxygen/chemistry , Oxygen/metabolism , Partial Pressure , Phenylurea Compounds , Spectrum Analysis
20.
Nitric Oxide ; 27(3): 150-60, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22705913

ABSTRACT

Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially due to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential.


Subject(s)
Acetylcysteine/analogs & derivatives , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Vasodilation/drug effects , Acetylcysteine/administration & dosage , Acetylcysteine/chemistry , Animals , Blood Pressure/drug effects , Carbon Dioxide/blood , Cricetinae , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Glutathione/metabolism , Heart Rate/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Male , Mesocricetus , Oxygen/blood , S-Nitrosoglutathione/metabolism , S-Nitrosothiols/chemistry , S-Nitrosothiols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL