Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Language
Publication year range
1.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Article in English | MEDLINE | ID: mdl-38781259

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/genetics , Mice , Humans , Disease Progression , Viral Proteins/genetics , Viral Proteins/metabolism , Lung/virology , Lung/pathology , Virus Replication , Pneumonia/virology , Pneumonia/pathology , Chlorocebus aethiops , Mutation , Vero Cells , Female
2.
PLoS Pathog ; 19(12): e1011870, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117830

ABSTRACT

The COVID-19 pandemic has claimed over 6.5 million lives worldwide and continues to have lasting impacts on the world's healthcare and economic systems. Several approved and emergency authorized therapeutics that inhibit early stages of the virus replication cycle have been developed however, effective late-stage therapeutical targets have yet to be identified. To that end, our lab identified that 2',3' cyclic-nucleotide 3'-phosphodiesterase (CNP) inhibits SARS-CoV-2 virion assembly. We show that CNP inhibits the generation of new SARS-CoV-2 virions, reducing intracellular titers without inhibiting viral structural protein translation. Additionally, we show that targeting of CNP to mitochondria is necessary for inhibition, blocking mitochondrial depolarization and implicating CNP's proposed role as an inhibitor of the mitochondrial permeabilization transition pore (mPTP) as the mechanism of virion assembly inhibition. We also demonstrate that an adenovirus expressing virus expressing both human ACE2 and CNP inhibits SARS-CoV-2 titers to undetectable levels in lungs of mice. Collectively, this work shows the potential of CNP to be a new SARS-CoV-2 antiviral target.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Humans , Animals , COVID-19/metabolism , Pandemics , Mitochondria/metabolism , Virus Assembly , Antiviral Agents/metabolism
3.
Am J Perinatol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38729183

ABSTRACT

OBJECTIVE: Pregnant women are at increased risk of coronavirus disease 2019 (COVID-19). This could be explained through the prism of physiologic and immunologic changes in pregnancy. In addition, certain immunological reactions originate in the placenta in response to viral infections.This study aimed to investigate whether severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can infect the human placenta and discuss its implications in the pathogenesis of adverse pregnancy outcomes. STUDY DESIGN: We conducted a retrospective cohort study in which we collected placental specimens from pregnant women who had a laboratory-confirmed SARS-CoV-2 infection. We performed RNA in situ hybridization assay on formalin-fixed paraffin-embedded tissues to establish the in vivo evidence for placental infectivity by this corona virus. In addition, we infected trophoblast isolated from uninfected term human placenta with SARS-CoV-2 variants to further provide in vitro evidence for such an infectivity. RESULTS: There was a total of 21 cases enrolled, which included 5 cases of spontaneous preterm birth (SPTB) and 2 intrauterine fetal demises (IUFDs). Positive staining of positive-sense strand of SARS-CoV-2 virions was detected in 15 placentas including 4 SPTB and both IUFDs. In vitro infection assay demonstrated that SARS-CoV-2 virions were highly capable of infecting both cytotrophoblast and syncytiotrophoblast. CONCLUSION: This study implies that placental SARS-CoV-2 infection may be associated with an increased risk of adverse obstetrical outcomes. KEY POINTS: · SARS-CoV-2 can effectively infect human placenta.. · Such infectivity is confirmed by in vitro experiments.. · Placental SARS-CoV-2 corelates with adverse obstetrical outcomes..

4.
Open Forum Infect Dis ; 11(2): ofad625, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352152

ABSTRACT

Nirmatrelvir/ritonavir (NMV/r) is used for the treatment of coronavirus disease 2019 (COVID-19) infection. However, rebound COVID-19 infections can occur after taking NMV/r. We examined neutralizing antibodies to the severe acute respiratory syndrome coronavirus 2 spike protein before and after infection in people who did and did not take NMV/r to determine if NMV/r impedes the humoral immune response.

5.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026801

ABSTRACT

Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.

6.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748773

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cricetinae , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL