Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 43(3): 611-616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38167987

ABSTRACT

Impaired T-cell responses to mitogens and high T-cell activation marker (TAM) expression on Mycobacterium tuberculosis-specific T-cells characterize immunopathology in patients with tuberculosis (TB). In a study of patients with TB (n = 60) and asymptomatic contacts (controls, n = 37), we found that TB patients had higher CD38+ T-cell proportions specific for M. tuberculosis protein (PPDMtb), yet total proportions of PPDMtb-specific T-cells were comparable. Notably, both activated (CD38+) and total IFN-γ+ T-cells from TB patients had lower mitogen (phytohemagglutinin, PHA)-induced responses. This impaired mitogen response improved the classification efficacy of the TAM-TB assay, especially employing the PPD/PHA-induced T-cell ratio.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mitogens/pharmacology , Tuberculin , T-Lymphocytes , Antigens, Bacterial
2.
Drug Dev Ind Pharm ; 50(5): 401-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38466185

ABSTRACT

OBJECTIVE: Magnolol (MG) and Brucea javanica (L.) Merr. oil (BJO) possess synergetic anti-tumor effects, but have poor water solubility and stability, which results in low oral bioavailability. SIGNIFICANCE: The MG loaded self-microemulsion drug delivery system (MG-SMDDS) with BJO as oil phase component was utilized to improve the cellular uptake and synergetic anti-tumor effects. METHODS: Compatibility study and pseudoternary phase diagram (PTPD) were respectively employed to screen for the composition and proportion of oil phase in the formulation. Central composite design-effect surface method was applied to optimize proportion of each formulation condition. The droplet size, ζ-potential, colloid stability, encapsulation rate (ER) and in vitro dissolution rate of MG-SMDDS were evaluated. Furthermore, cellular uptake and cytotoxicity of the microemulsion on HepG2 cells were assessed. RESULTS: The optimal composition of MG-SMDDS was: MG (9.09%), castor oil (7.40%), BJO (2.47%), Cremophor EL 35 (54.04%) and 1, 2-propanediol (27.01%). The MG-SMDDS exhibited satisfactory droplet size, ζ-potential, colloid stability and ER, as well as faster dissolution rate than free MG. More importantly, SMEDDS containing BJO could enhance the cellular uptake and cytotoxicity of free BJO and free MG on tumor cells. CONCLUSIONS: The BJO self-microemulsion delivery technique can provide an idea for design of oral delivery vehicles based on BJO.


Subject(s)
Biphenyl Compounds , Brucea , Drug Delivery Systems , Emulsions , Lignans , Plant Oils , Solubility , Lignans/administration & dosage , Lignans/pharmacology , Lignans/pharmacokinetics , Lignans/chemistry , Humans , Brucea/chemistry , Biphenyl Compounds/chemistry , Hep G2 Cells , Drug Delivery Systems/methods , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Particle Size , Biological Availability , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects
3.
J Microencapsul ; 41(4): 269-283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618699

ABSTRACT

AIMS: Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS: The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS: The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 µg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION: MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.


Subject(s)
Flavonoids , Liposomes , Liposomes/chemistry , Flavonoids/pharmacokinetics , Flavonoids/chemistry , Flavonoids/administration & dosage , Flavonoids/pharmacology , Hydrogen-Ion Concentration , Animals , Male , Uric Acid , Biological Availability , Particle Size , Rats, Sprague-Dawley , Drug Liberation , Rats
4.
J Sci Food Agric ; 104(3): 1408-1419, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782057

ABSTRACT

BACKGROUND: Astaxanthin (AST) is approved by the US Food and Drug Administration (FDA) as a safe dietary supplement for humans. As a potent lipid-soluble keto-carotenoid, it is widely used in food, cosmetics, and the pharmaceutical industry. However, its low solubility limits its powerful biological activity and its application in these fields. This study aims to develop a delivery system to address the low solubility and bioavailability of AST and to enhance its antioxidant capacity. RESULTS: Astaxanthin-loaded composite micelles were successfully prepared via coaxial electrospray technology. Astaxanthin existed in the amorphous state in the electro-sprayed formulation with an approximate particle size of 186.28 nm and with a polydispersity index of 0.243. In this delivery system, Soluplus and copovidone (PVPVA 64) were the main polymeric matrix for AST, which then released the drug upon contact with aqueous media, resulting in an overall increase in drug solubility and a release rate of 94.08%. Meanwhile, lecithin, and Polyethylene glycol-grafted Chitosan (PEG-g-CS) could support the absorption of AST in the gastrointestinal tract, assisting transmembrane transport. The relative bioavailability reached about 308.33% and the reactive oxygen species (ROS) scavenging efficiency of the formulation was 44.10%, which was 1.57 times higher than that of free astaxanthin (28.10%) when both were at the same concentration level based on astaxanthin. CONCLUSION: Coaxial electrospray could be applied to prepare a composite micelles system for the delivery of poorly water-soluble active ingredients in functional food, cosmetics, and medicine. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Micelles , Humans , Drug Carriers , Biological Availability , Solubility , Particle Size , Water , Administration, Oral
5.
Biopharm Drug Dispos ; 44(2): 137-146, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36999487

ABSTRACT

The purpose of this work was to fabricate the microencapsulation of capsaicin using electrospray technology and polyvinylpyrrolidone (PVP) K30 as a carrier. The morphological characteristics of capsaicin-PVP electrosprayed microencapsulation complex under different processing parameters were observed by scanning electron microscope (SEM), while the best process was determined, wherein it comprised of 10 KV (voltage), 0.8 ml·h-1 (solution flow rate), 0.9 mm (the inner diameter of the needle), and 10 cm (receiving distance). The X-ray diffraction results of the electrosprayed complex showed that capsaicin was present in the carrier in an amorphous form. The drug release properties of capsaicin powder and electrosprayed complex in different media were investigated. The results showed that in vitro release rates of the capsaicin complex in different media were much higher than that of capsaicin powder, with correspondingly improved bioavailability, defined by intravenous and oral dosing in rats in vivo, for the electrosprayed complex compared to that of capsacin powder. The dose absorbed of the electrosprayed complex was 2.2-fold that of the capsaicin powder. In short, electrospray technology can be used to prepare capsaicin-loaded electrosprayed microencapsulation complex. This technique can improve the solubility and bioavailability of capsaicin, and provide a new idea for the solubilization of other insoluble drugs.


Subject(s)
Capsaicin , Povidone , Rats , Animals , Biological Availability , Powders , Administration, Oral , Solubility
6.
J Microencapsul ; 40(6): 442-455, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37191893

ABSTRACT

OBJECTIVE: Encapsulation of esculetin into DSPE-MPEG2000 carrier was performed to improve its water solubility and oral bioavailability, as well as enhance its anti-inflammatory effect on a mouse model of ulcerative colitis that was induced with dextran sulphate sodium (DSS). METHODS: We determined the in-vitro and in-vivo high-performance liquid chromatographic (HPLC) analysis method of esculetin; Esculetin-loaded nanostructure lipid carrier (Esc-NLC) was prepared using a thin-film dispersion method, wherein a particle size analyser was used to measure the particle size (PS) and zeta potential (ZP) of the Esc-NLC, while a transmission electron microscope (TEM) was employed to observe its morphology. Also, HPLC was used to measure its drug loading (DL), encapsulation efficiency (EE) and the in-vitro release of the preparation, as well as investigate the pharmacokinetic parameters. In addition, its anti-colitis effect was evaluated via histopathological examination of HE-stained sections and detection of the concentrations of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), and IL-6 in serum with ELISA kits. RESULTS: The PS of Esc-NLC was 102.29 ± 0.63 nm with relative standard deviation (RSD) of 1.08% (with poly-dispersity index-PDI of 0.197 ± 0.023), while the ZP was -15.67 ± 1.39 mV with RSD of 1.24%. Solubility of esculetin was improved coupled with prolonged release time. Its pharmacokinetic parameters were compared with that of free esculetin, wherein the maximum concentration of the drug in plasma was increased by 5.5 times. Of note, bioavailability of the drug was increased by 1.7 times, while the half-life was prolonged by 2.4 times. In the anti-colitis efficacy experiment, the mice in Esc and Esc-NLC groups exhibited significantly reduced levels of TNF-α, IL-1ß, and IL-6 in their sera comparable to the DSS group. Colon histopathological examination revealed that mice with ulcerative colitis in both Esc and Esc-NLC groups displayed improved inflammation, amid the Esc-NLC groups having the best prophylactic treatment effect. CONCLUSION: Esc-NLC could ameliorate DSS-induced ulcerative colitis by improving bioavailability, prolonging drug release time and regulating cytokine release. This observation confirmed the potential of Esc-NLC to reduce inflammation in ulcerative colitis, albeit the need for follow-up research to verify the application of this strategy to clinical treatment of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Interleukin-6 , Tumor Necrosis Factor-alpha , Inflammation , Excipients , Lipids
7.
J Sci Food Agric ; 103(7): 3628-3637, 2023 May.
Article in English | MEDLINE | ID: mdl-36840513

ABSTRACT

BACKGROUND: Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-ß-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS: Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION: 2-hydroxypropyl-ß-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.


Subject(s)
Nanoparticles , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Nanoparticles/chemistry , Solubility , Biological Availability , Technology , Micelles , Water/chemistry
8.
AAPS PharmSciTech ; 24(4): 82, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949351

ABSTRACT

Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.


Subject(s)
Glioma , Photochemotherapy , Humans , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Liposomes/chemistry , Photochemotherapy/methods , Microfluidics , Glioma/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Cell Line, Tumor
9.
Drug Dev Ind Pharm ; 48(11): 623-634, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36420780

ABSTRACT

PURPOSE: To prepare polyethylene glycol succinate-vitamin E modified pinocembrin (PCB)-loaded liposomes (PCBT-liposomes) and evaluate PCBT-liposomal pharmacokinetics and antihyperglycemic activity. SIGNIFICANCE: The novel PCBT-liposomes demonstrated a promising application prospect as a nano drug carrier for future research. METHODS: Thin film dispersion was used to prepare PCBT-liposomes. We measured a series of characterization, followed by in vitro cumulative release, in vivo pharmacokinetic study, and antihyperglycemic activity evaluation. RESULTS: PCBT-liposomes displayed spherical and bilayered nanoparticles with mean particle size (roughly 92 nm), negative zeta potential (about -26.650 mV), high drug encapsulation efficiency (87.32 ± 1.34%) and good storage (at 4 or 25 °C) stability during 48 h after hydration. The cumulative release rate of PCBT-liposomes was markedly higher than free PCB in four different pH media. In vivo investigation showed that PCBT-liposomes could obviously improve oral bioavailability of PCB by 1.96 times, whereas the Cmax, MRT0-t, and T1/2 of PCBT-liposomes were roughly 1.700 ± 0.139 µg·mL-1, 12.695 ± 1.647 h, and 14.244 h, respectively. In terms of biochemical analysis, aspartate amino-transferase (AST), alanine amino-transferase (ALT), interleukin-1 (IL-1), and tumor necrosis factor-α (TNF-α) concentrations in serum of diabetic mice were respectively decreased 28.28%, 17.23%, 17.77%, and 8.08% after PCBT-liposomal treatment. CONCLUSION: These results show PCBT-liposomal preparation as an excellent nano-carrier which has the potential to improve water solubility, bioavailability, and antihyperglycemic activity of PCB, amid broadening the application of PCB in the clinical settings.


Subject(s)
Diabetes Mellitus, Experimental , Liposomes , Mice , Animals , Liposomes/chemistry , Biological Availability , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Polyethylene Glycols/chemistry , Particle Size
10.
J Microencapsul ; 39(5): 419-432, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35766329

ABSTRACT

Aim: Hydrophobic pinocembrin (PCB) was incorporated into a new nano-drug delivery system to enhance solubility, bioavailability and anti-hyperuricemic activity of the drug.Methods: We fabricated PCB loaded polymeric micelles (PCB-FPM) by thin film dispersion method and appropriately determined their physical characteristics. The oral relative bioavailability and anti-hyperuricemic activity of PCB-FPM and free PCB were observed.Results: The optimum particle size of the micelles was 19.90 ± 0.93 nm. PCB-FPM exhibited great stability within 18 days, coupled with lower cytotoxicity and higher biocompatibility. Moreover, the percent cumulative release of PCB-FPM was much higher than free PCB in the dissolution media. The oral bioavailability of PCB-FPM was increased by 2.61 times compared with free PCB. Uric acid (UA) level of rats was reduced in PCB-FPM group (200 mg/kg) by 78.82% comparable to the model control.Conclusion: PCB-FPM may become an ideal strategy to increase oral in-vivo availability and anti-hyperuricemic activity of PCB.


Subject(s)
Drug Delivery Systems , Micelles , Administration, Oral , Animals , Biological Availability , Drug Carriers/chemistry , Drug Delivery Systems/methods , Flavanones , Particle Size , Polymers/chemistry , Rats , Rats, Sprague-Dawley , Solubility
11.
J Sci Food Agric ; 102(5): 2032-2040, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34558068

ABSTRACT

BACKGROUND: This study focused on the development of a self-nanoemulsifying drug delivery system (SNEDDS) to improve, potentially, the solubility and oral bioavailability of liquiritin (LQ). METHODS: The solubility of LQ in different types of excipient, namely oils (OLs), emulsifiers (EMs), and co-emulsifiers (CO-EMs), was evaluated, and a pseudo-ternary phase diagram (PTPD) and the formulation optimization were established. The prepared self-nanoemulsifying drug delivery system of liquiritin (LQ-SNEDDS) was assessed using droplet size (DS), zeta potential (ZP), polydispersity index (PDI), droplet morphology, drug release in vitro, and oral bioavailability. RESULTS: After the dilution of the LQ-SNEDDS, a transparent nanoemulsion was obtained with an acceptable DS (24.70 ± 0.73 nm), ZP (-18.69 ± 1.44 mV), and PDI (0.122 ± 0.006). The LQ-SNEDDS that was developed had a better release rate in vitro than the free LQ suspension. Pharmacokinetic evaluation showed that the relative oral bioavailability of LQ-SNEDDS was increased by 5.53 times, and LQ-SNEDDS exhibited a delayed half life and longer retention time in comparison with those of free LQ. Similarly, LQ-SNEDDS had a better urate lowering effect and provided better organ protection than free LQ at the same dose (P < 0.05). CONCLUSIONS: The incorporation of LQ into SNEDDS could serve as a promising approach to improve the solubility, oral bioavailability, and anti-hyperuricemic effect of LQ. © 2021 Society of Chemical Industry.


Subject(s)
Drug Delivery Systems , Nanoparticles , Administration, Oral , Biological Availability , Emulsions , Flavanones , Glucosides , Particle Size , Solubility , Surface-Active Agents
12.
Pharm Dev Technol ; 27(7): 829-841, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36073188

ABSTRACT

Hyperoside (Hyp) self-assembled polymeric micelles (Hyp-PMs) were purposely developed to enhance aqueous solubility, in vivo availability and anti-oxidative effect of Hyp. In preparing Hyp-PMs, we employed the thin film dispersion method with the micelles consisting of TPGs and mPEG2000-PDLLA3000. The particle size, polydispersity index and zeta potential of Hyp-PMs were 67.42 ± 1.44 nm, 0.229 ± 0.015 and -18.67 ± 0.576 mV, respectively, coupled with high encapsulation efficiency (EE)of 90.63 ± 1.45% and drug loading (DL) of 6.97 ± 1.56%. Furthermore, the value of critical micelle concentration (CMC) was quite low, which indicated good stability and improved self-assembly ability of Hyp-PMs. Also, trend of in vitro Hyp release from Hyp-PMs demonstrated enhanced solubility of Hyp. Similarly, in comparison with free Hyp, oral bioavailability of Hyp-PMs was improved (about 8 folds) whilst half-life of Hyp-PMs was extended (about 3 folds). In vitro anti-oxidative effect showed obvious strong scavenging DPPH capability of Hyp-PMs, which may be attributed to its smaller size and better solubility. Altogether, Hyp-PMs may serve as a possible strategy to potentially enhance aqueous solubility, bioavailability and anti-oxidative effect of Hyp, which may play a key role in Hyp application in the pharmaceutical industries.


Subject(s)
Micelles , Polyethylene Glycols , Drug Carriers/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polymers/chemistry , Quercetin/analogs & derivatives , Solubility
13.
AAPS PharmSciTech ; 23(4): 106, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381887

ABSTRACT

Diosmetin (DIOS) is a functional compound with poor water solubility, bad permeability, and crystal form. Self-microemulsifying drug delivery system (SMEDDS) was an effective formulation to overcome these shortcomings. In this study, liquid SMEDDS was prepared using Capmul® MCM C8 EP/NF, Cremophor EL, and PEG 400 (2:5.6:2.4, w/w/w) as excipients. Then, the novel technology of electrospray solidified liquid SMEDDS and prepared solid SMEDDS for inhibiting crystallization. Polyvinyl pyrrolidone (PVP) was used as carrier to construct DIOS-loaded solid SMEDDS, with polyethylene oxide (PEO) contributing to the formation of regular sphere in the process of spinning. The particle size of solid SMEDDS (194 ± 5 nm) was much bigger than of liquid SMEDDS (25 ± 1 nm), while DIOS-loaded solid SMEDDS showed greater dissolution rates in pH 1.2 and pH 6.8 media through in vitro drug release study. The solid nanoparticles were smooth and uniform from the graph of a scanning electron microscope (SEM). The graph of a transmission electron microscope (TEM) showed that small droplets were loaded in the matrix. Furthermore, DIOS was encapsulated by matrix in amorphous state via differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared (ATR-FTIR). The crystalline of DIOS was not formed in solid SMEDDS due to the characteristic peaks of DIOS disappeared in X-ray diffraction (XRD) pattern. Therefore, the oral bioavailability of DIOS improved significantly compared with liquid SMEDDS (4.27-fold). Hence, solid SMEDDS could improve the solubility and bioavailability of DIOS, through transfer of the state of crystalline to amorphous by electrospray technology.


Subject(s)
Drug Delivery Systems , Administration, Oral , Biological Availability , Emulsions/chemistry , Flavonoids , Solubility
14.
AAPS PharmSciTech ; 23(7): 276, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36207561

ABSTRACT

Pinocembrin (PCB) is 5,7-dihydroxyl flavanone and has multiple pharmacological activities, namely, anti-inflammation, anti-osteoporotic, and so on. However, low water solubility and bioavailability have hindered its application. Herein, we aimed to increase its bioavailability through preparation of F127/MPEG-PDLLA polymer micelles (PCB-M). We characterized the micelles through appropriate attributes such as analysis of particle size (PS), polydispersity (PDI), transmission electron microscopic (TEM) image, stability test, and evaluation of in vitro release of drug. After physical characterization, the respective PS, PDI, and entrapment efficiency (EE) of PCB-M were estimated to be 27.63 ± 0.17 nm, 0.055 ± 0.02, and 90.53 ± 0.01%. Fluorescence probe method was employed to measure critical micelle concentration (CMC) of PCB-M, we observed CMC was low, thereby suggesting that PCB-M had good stability. In vitro release analysis indicated that the rate of cumulative PCB release from PCB-M was greater than 90% in each medium compared with free PCB, which was less than 40%, thus pointing to a significantly improved solubility of PCB. In vivo pharmacokinetic results showed that oral biological availability of PCB-M increased 5.3 folds comparable to free PCB. The effects of PCB on osteoblasts and ALP activities were investigated; subsequently, zebrafish osteoporotic model was established with prednisolone to study the anti-osteoporotic effects of PCB and PCB-M. The results showed that PCB improved osteoporosis with PCB-M being more effective than free PCB. Finally, PCB-M can be used as a promising method to improve the solubility of PCB, while the bioavailability and anti-osteoporotic effect of PCB could be improved, thus laying a foundation for clinical use in the future.


Subject(s)
Flavanones , Micelles , Animals , Drug Carriers , Drug Delivery Systems/methods , Flavanones/pharmacology , Particle Size , Polyethylene Glycols , Polyethylenes , Polymers , Polypropylenes , Prednisolone , Solubility , Water , Zebrafish
15.
Lancet ; 395(10232): 1259-1267, 2020 04 18.
Article in English | MEDLINE | ID: mdl-32171422

ABSTRACT

BACKGROUND: Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans infection that damages the skin and subcutis. It is most prevalent in western and central Africa and Australia. Standard antimicrobial treatment with oral rifampicin 10 mg/kg plus intramuscular streptomycin 15 mg/kg once daily for 8 weeks (RS8) is highly effective, but streptomycin injections are painful and potentially harmful. We aimed to compare the efficacy and tolerability of fully oral rifampicin 10 mg/kg plus clarithromycin 15 mg/kg extended release once daily for 8 weeks (RC8) with that of RS8 for treatment of early Buruli ulcer lesions. METHODS: We did an open-label, non-inferiority, randomised (1:1 with blocks of six), multicentre, phase 3 clinical trial comparing fully oral RC8 with RS8 in patients with early, limited Buruli ulcer lesions. There were four trial sites in hospitals in Ghana (Agogo, Tepa, Nkawie, Dunkwa) and one in Benin (Pobè). Participants were included if they were aged 5 years or older and had typical Buruli ulcer with no more than one lesion (caterories I and II) no larger than 10 cm in diameter. The trial was open label, and neither the investigators who took measurements of the lesions nor the attending doctors were masked to treatment assignment. The primary clinical endpoint was lesion healing (ie, full epithelialisation or stable scar) without recurrence at 52 weeks after start of antimicrobial therapy. The primary endpoint and safety were assessed in the intention-to-treat population. A sample size of 332 participants was calculated to detect inferiority of RC8 by a margin of 12%. This study was registered with ClinicalTrials.gov, NCT01659437. FINDINGS: Between Jan 1, 2013, and Dec 31, 2017, participants were recruited to the trial. We stopped recruitment after 310 participants. Median age of participants was 14 years (IQR 10-29) and 153 (52%) were female. 297 patients had PCR-confirmed Buruli ulcer; 151 (51%) were assigned to RS8 treatment, and 146 (49%) received oral RC8 treatment. In the RS8 group, lesions healed in 144 (95%, 95% CI 91 to 98) of 151 patients, whereas lesions healed in 140 (96%, 91 to 99) of 146 patients in the RC8 group. The difference in proportion, -0·5% (-5·2 to 4·2), was not significantly greater than zero (p=0·59), showing that RC8 treatment is non-inferior to RS8 treatment for lesion healing at 52 weeks. Treatment-related adverse events were recorded in 20 (13%) patients receiving RS8 and in nine (7%) patients receiving RC8. Most adverse events were grade 1-2, but one (1%) patient receiving RS8 developed serious ototoxicity and ended treatment after 6 weeks. No patients needed surgical resection. Four patients (two in each study group) had skin grafts. INTERPRETATION: Fully oral RC8 regimen was non-inferior to RS8 for treatment of early, limited Buruli ulcer and was associated with fewer adverse events. Therefore, we propose that fully oral RC8 should be the preferred therapy for early, limited lesions of Buruli ulcer. FUNDING: WHO with additional support from MAP International, American Leprosy Missions, Fondation Raoul Follereau France, Buruli ulcer Groningen Foundation, Sanofi-Pasteur, and BuruliVac.


Subject(s)
Buruli Ulcer/drug therapy , Clarithromycin/administration & dosage , Rifampin/administration & dosage , Streptomycin/administration & dosage , Administration, Oral , Adolescent , Adult , Anti-Bacterial Agents , Benin , Child , Clarithromycin/adverse effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/adverse effects , Drug Therapy, Combination , Female , Ghana , Humans , Male , Rifampin/adverse effects , Streptomycin/adverse effects , Wound Healing/drug effects , Young Adult
16.
Anal Chem ; 93(4): 2627-2634, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33471510

ABSTRACT

In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.


Subject(s)
COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , Recombinases/metabolism , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , Sensitivity and Specificity
17.
Arch Virol ; 166(5): 1385-1393, 2021 May.
Article in English | MEDLINE | ID: mdl-33723631

ABSTRACT

Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.


Subject(s)
COVID-19/transmission , SARS-CoV-2/classification , Whole Genome Sequencing/methods , Female , Genome, Viral , Ghana , Humans , Male , Nasopharynx/virology , Oropharynx/virology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA
18.
BMC Infect Dis ; 21(1): 331, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33832460

ABSTRACT

BACKGROUND: Previous studies have reported that presence and severity of Buruli ulcer (BU) may reflect the underlying immunosuppression in HIV infected individuals by causing increased incidence of multiple, larger and ulcerated lesions. We report cases of BU-HIV coinfection and the accompanying programmatic challenges encountered in central Ghana. METHODS: Patients with PCR confirmed BU in central Ghana who were HIV positive were identified and their BU01 forms were retrieved and reviewed in further detail. A combined 16S rRNA reverse transcriptase / IS2404 qPCR assay was used to assess the Mycobacterium ulcerans load. The characteristics of coinfected patients (BU+HIV+) were compared with a group of matched controls. RESULTS: The prevalence of HIV in this BU cohort was 2.4% (compared to national HIV prevalence of 1.7%). Eight of 9 BU+HIV+ patients had a single lesion and ulcers were the most common lesion type. The lesions presented were predominantly category II (5/9) followed by category I lesions. The median (IQR) time to healing was 14 (8-28) weeks in the BU+HIV+ compared to 28 (12-33) weeks in the control BU+HIV- group (p = 0.360). Only one BU+HIV+ developed a paradoxical reaction at week 16 but the lesion healed completely at week 20. The median bacterial load (16SrRNA) of BU+HIV+ patients was 750 copies /ml (95% CI 0-398,000) versus 500 copies/ml (95% CI 0-126,855,500) in BU+HIV- group. Similarly, the median count using the IS2404 assay was 500 copies/ml (95% CI 0-500) for BU+HIV+ patients versus 500 copies/ml (95% CI 500-31,000) for BU+HIV- patients. BU+HIV- patients mounted a significantly higher interferon-γ response compared to the BU+HIV+ co-infected patients with respective median (range) responses of [1687(81.11-4399) pg/ml] versus [137.5(4.436-1406) pg/ml, p = 0.03]. There were challenges with the integration of HIV and BU care in this cohort. CONCLUSION: The prevalence of HIV in the BU+ infected population was not significantly increased when compared to the prevalence of HIV in the general population. There was no clear relationship between BU lesion severity and HIV viral load or CD4 counts. Efforts should be made to encourage the integration of care of patients with BU-HIV coinfection.


Subject(s)
Buruli Ulcer/epidemiology , Buruli Ulcer/etiology , HIV Infections/epidemiology , Adolescent , Adult , Bacterial Load , Buruli Ulcer/drug therapy , Buruli Ulcer/virology , CD4 Lymphocyte Count , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Female , Ghana/epidemiology , HIV Infections/drug therapy , HIV Infections/microbiology , Humans , Male , Middle Aged , Mycobacterium ulcerans/genetics , Prevalence , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , Retrospective Studies , Viral Load , Wound Healing , Young Adult
19.
Drug Dev Ind Pharm ; 47(2): 308-318, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33494627

ABSTRACT

OBJECTIVES: Liquiritin, as one of the main flavonoids in Glycyrrhiza, exhibits extensive pharmacological effects, such as the anti-oxidant, anti-inflammatory, anti-tumor and so on. Herein, the aqueous solubility and oral bioavailability of liquiritin was purposely enhanced via the preparation of the mixed micelles. METHODS: The liquiritin-loaded micelles (LLM) were fabricated via thin-film dispersion method. The optimal LLM formulation was evaluated through physical properties including particle size (PS), encapsulation efficiency (EE) and drug loading (DL). In vitro accumulate release as well as in vivo pharmacokinetics were also evaluated. Moreover, the hypolipidemic activity of LLM was observed in the hyperlipidemia mice model. RESULTS: The LLM exhibited a homogenous spherical shape with small mean PS, good stability and high encapsulation efficiency. The accumulate release rates in vitro of the LLM were obviously higher than free liquiritin. The oral bioavailability of the formulation was heightened by 3.98 times in comparison with the free liquiritin. More importantly, LLM increased the hypolipidemic and effect of alleviating lipid metabolism disorder in hepatocytes of liquiritin in hyperlipidemia mice model. CONCLUSIONS: Collectively, the improved solubility of liquiritin in water coupled with its enhanced oral bioavailability and concomitant hypolipidemic activity could be attributed to the incorporation of the drug into the mixed micelles.


Subject(s)
Flavanones/administration & dosage , Glucosides/administration & dosage , Micelles , Administration, Oral , Animals , Biological Availability , Drug Carriers , Flavanones/chemistry , Flavanones/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Mice , Particle Size , Solubility
20.
J Microencapsul ; 38(7-8): 459-471, 2021.
Article in English | MEDLINE | ID: mdl-34338606

ABSTRACT

The aim of this study was to develop licochalcone A-loaded self-microemulsifying drug delivery system (LCA-SMEDDS) to improve bioavailability and anti-hyperuricemic activity of hydrophobic natural compound licochalcone A (LCA). The prepared LCA-SMEDDS was characterised by transmission electron microscopy analysis, particle size, polymer dispersity index (PDI), zeta potential, stability tests and in vitro release analysis. LCA-SMEDDS and free LCA were orally administered to Sprague-Dawley rats to investigate respective bioavailability. The hyperuricaemia rat model was established to evaluate anti-hyperuricemic activity. The particle size, PDI, and zeta potential of LCA-SMEDDS were 25.68 ± 0.79 nm, 0.074 ± 0.024, -14.37 ± 2.17 mV. The oral bioavailability of LCA-SMEDDS was increased 2.36-fold compared with the free LCA. The uric acid level of LCA-SMEDDS group (200 mg/kg) was decreased 60.08% compared with model control group. The developed LCA-SMEDDS could be an outstanding candidate for improving oral bioavailability and anti-hyperuricemic activity of LCA.


Subject(s)
Hyperuricemia , Administration, Oral , Animals , Biological Availability , Chalcones , Drug Delivery Systems , Emulsions/therapeutic use , Hyperuricemia/drug therapy , Particle Size , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL