Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Article in English | MEDLINE | ID: mdl-33479702

ABSTRACT

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Stearoyl-CoA Desaturase , Central Nervous System/metabolism , Humans , Lipogenesis , Stearoyl-CoA Desaturase/genetics , Tumor Microenvironment
2.
J Cardiovasc Pharmacol ; 47(5): 668-72, 2006 May.
Article in English | MEDLINE | ID: mdl-16775506

ABSTRACT

Endothelin-1 (ET-1) receptor antagonists increase plasma immunoreactive ET-1 levels. However, their effect on preproendothelin-1 (PPE-1) mRNA levels is still controversial. Few studies have found a decrease in PPE-1 mRNA levels in endothelial cells treated with the nonselective ETA/B receptor antagonist, and others demonstrated that an ETB blockade by the selective antagonist BQ788 increases PPE-1 mRNA levels. We studied the effect of ETA and ETB selective receptor antagonists on PPE-1 transcription, both in vitro and in vivo. Endothelial cells, transiently transfected with PPE-1 luciferase plasmid, were treated with ET-1 receptor antagonists. Bosentan, a dual ETA/B receptor antagonist, and BQ788 (ETB receptor antagonist) treatment resulted in a 1.6-fold and 1.3-fold increase, respectively in luciferase activity as compared with the untreated control. In contrast, the ETA receptor antagonist, BQ123, had no effect on luciferase activity. Transgenic mice that express the luciferase gene under the control of PPE-1 promoter were treated with Bosentan. Luciferase activity, PPE-1 mRNA levels, and plasma immunoreactive ET-1 levels were increased by 1.6-fold to 2.0-fold in the Bosentan-treated group compared with the untreated, control group. ET-1 receptor blockade increased PPE-1 transcription both in vitro and in vivo. The increased transcription can be attributed to ETB receptor blockade, because BQ-788, but not BQ-123, increased PPE-1 transcription.


Subject(s)
Endothelial Cells/drug effects , Endothelin B Receptor Antagonists , Endothelin-1/biosynthesis , Oligopeptides/pharmacology , Piperidines/pharmacology , Animals , Aorta , Bosentan , Cattle , Endothelial Cells/metabolism , Endothelin A Receptor Antagonists , Endothelin-1/blood , Endothelin-1/genetics , Endothelin-1/immunology , Luciferases/genetics , Luciferases/metabolism , Lung/metabolism , Mice , Mice, Transgenic , Peptides, Cyclic/pharmacology , RNA, Messenger/analysis , Sulfonamides/pharmacology , Tissue Distribution , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL