Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Proc Natl Acad Sci U S A ; 121(4): e2317928121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236738

ABSTRACT

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


Subject(s)
Chytridiomycota , Mycoses , Animals , Batrachochytrium , Chytridiomycota/genetics , Anura , Amphibians/microbiology , Mycoses/microbiology , Transformation, Genetic
2.
Cell ; 140(5): 631-42, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211133

ABSTRACT

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Subject(s)
Biological Evolution , Naegleria/genetics , Eukaryota/classification , Eukaryota/genetics , Flagella/metabolism , Molecular Sequence Data , Naegleria/metabolism , Phylogeny , Protozoan Proteins/analysis , Protozoan Proteins/genetics
3.
Nature ; 518(7537): 98-101, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25470067

ABSTRACT

Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.


Subject(s)
Bacteria/enzymology , Bacteria/genetics , Bacterial Toxins/genetics , Eukaryota/genetics , Eukaryota/immunology , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Immunity, Innate , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Bacteria/cytology , Bacteria/immunology , Bacterial Secretion Systems , Bacterial Toxins/metabolism , Borrelia burgdorferi/cytology , Borrelia burgdorferi/growth & development , Borrelia burgdorferi/immunology , Cell Wall/metabolism , Conserved Sequence/genetics , Eukaryota/metabolism , Immunity, Innate/genetics , Ixodes/genetics , Ixodes/immunology , Ixodes/metabolism , Ixodes/microbiology , Phylogeny , Substrate Specificity
5.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260630

ABSTRACT

Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it impossible to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria uses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.

6.
Curr Biol ; 34(7): 1469-1478.e6, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38490202

ABSTRACT

The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.


Subject(s)
Chytridiomycota , Mycoses , Animals , Virulence/genetics , Chytridiomycota/genetics , Mycoses/microbiology , Amphibians/microbiology , Genotype , DNA Viruses
7.
Mol Biol Cell ; 34(12): pe6, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37906436

ABSTRACT

Many eukaryotic cells, including animal cells and unicellular amoebae, use dynamic-actin networks to crawl across solid surfaces. Recent discoveries of actin-dependent crawling in additional lineages have sparked interest in understanding how and when this type of motility evolved. Tracing the evolution of cell crawling requires understanding the molecular mechanisms underlying motility. Here we outline what is known about the diversity and evolution of the molecular mechanisms that drive cell motility, with a focus on actin-dependent crawling. Classic studies and recent work have revealed a surprising number of distinct mechanical modes of actin-dependent crawling used by different cell types and species to navigate different environments. The overlap in actin network regulators driving multiple types of actin-dependent crawling, along with cortical-actin networks that support the plasma membrane in these cells, suggest that actin motility and cortical actin networks might have a common evolutionary origin. The rapid development of additional evolutionarily diverse model systems, advanced imaging technologies, and CRISPR-based genetic tools, is opening the door to testing these and other new ideas about the evolution of actin-dependent cell crawling.


Subject(s)
Actins , Animals , Actins/metabolism , Cell Movement , Cell Membrane/metabolism
8.
Curr Biol ; 33(24): R1284-R1286, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38113837

ABSTRACT

The actin cytoskeleton is a protein polymer system that underlies a wide variety of eukaryotic phenotypes. A new study reports that diversity in a key actin regulator, the Arp2/3 complex, drives species-specific sperm development within the Drosophila lineage.


Subject(s)
Actin-Related Protein 2-3 Complex , Semen , Animals , Male , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Semen/metabolism , Actins/metabolism , Actin Cytoskeleton/metabolism , Drosophila/genetics
9.
Access Microbiol ; 5(5)2023.
Article in English | MEDLINE | ID: mdl-37323946

ABSTRACT

Chytrid fungi play key ecological roles in aquatic ecosystems, and some species cause a devastating skin disease in frogs and salamanders. Additionally, chytrids occupy a unique phylogenetic position- sister to the well-studied Dikarya (the group including yeasts, sac fungi, and mushrooms) and related to animals- making chytrids useful for answering important evolutionary questions. Despite their importance, little is known about the basic cell biology of chytrids. A major barrier to understanding chytrid biology has been a lack of genetic tools with which to test molecular hypotheses. Medina and colleagues recently developed a protocol for Agrobacterium -mediated transformation of Spizellomyces punctatus. In this manuscript, we describe the general procedure including planning steps and expected results. We also provide in-depth, step-by-step protocols and video guides for performing the entirety of this transformation procedure on protocols.io (dx.doi.org/10.17504/protocols.io.x54v9dd1pg3e/v1).

10.
Curr Biol ; 33(16): 3325-3337.e5, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37478864

ABSTRACT

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.


Subject(s)
Dictyostelium , Cytosol/metabolism , Osmolar Concentration , Water-Electrolyte Balance , Vacuoles/metabolism , Eukaryota , Water/metabolism
11.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909496

ABSTRACT

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.

12.
J Cell Sci ; 123(Pt 23): 4024-31, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21045110

ABSTRACT

Naegleria gruberi is a single-celled eukaryote best known for its remarkable ability to form an entire microtubule cytoskeleton de novo during its metamorphosis from an amoeba into a flagellate, including basal bodies (equivalent to centrioles), flagella and a cytoplasmic microtubule array. Our publicly available full-genome transcriptional analysis, performed at 20-minute intervals throughout Naegleria differentiation, reveals vast transcriptional changes, including the differential expression of genes involved in metabolism, signaling and the stress response. Cluster analysis of the transcriptional profiles of predicted cytoskeletal genes reveals a set of 55 genes enriched in centriole components (induced early) and a set of 82 genes enriched in flagella proteins (induced late). The early set includes genes encoding nearly every known conserved centriole component, as well as eight previously uncharacterized, highly conserved genes. The human orthologs of at least five genes localize to the centrosomes of human cells, one of which (here named Friggin) localizes specifically to mother centrioles.


Subject(s)
Cell Differentiation , Centrioles/genetics , Flagella/genetics , Gene Expression Regulation, Developmental , Naegleria/genetics , Protozoan Proteins/genetics , Centrioles/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Evolution, Molecular , Flagella/metabolism , Humans , Molecular Sequence Data , Naegleria/cytology , Naegleria/metabolism , Protozoan Proteins/metabolism
13.
Curr Biol ; 32(12): 2765-2771.e4, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35472310

ABSTRACT

The frog-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is decimating amphibian populations around the world.1-4Bd has a biphasic life cycle, alternating between motile zoospores that disperse within aquatic environments and sessile sporangia that grow within the mucus-coated skin of amphibians.5,6 Zoospores lack cell walls and swim rapidly through aquatic environments using a posterior flagellum and crawl across solid surfaces using actin structures similar to those of human cells.7,8Bd transitions from this motile dispersal form to its reproductive form by absorbing its flagellum, rearranging its actin cytoskeleton, and rapidly building a chitin-based cell wall-a process called "encystation."5-7 The resulting sporangium increases in volume by two or three orders of magnitude while undergoing rounds of mitosis without cytokinesis to form a large ceonocyte. The sporangium then cellurizes by dividing its cytoplasm into dozens of new zoospores. After exiting the sporangium through a discharge tube onto the amphibian skin, daughter zoospores can then reinfect the same individual or find a new host.5 Although encystation is critical to Bd growth, whether and how this developmental transition is triggered by external signals was previously unknown. We discovered that exposure to amphibian mucus triggers rapid and reproducible encystation within minutes. This response can be recapitulated with purified mucin, the bulk component of mucus, but not by similarly viscous methylcellulose or simple sugars. Mucin-induced encystation does not require gene expression but does require surface adhesion, calcium signaling, and modulation of the actin cytoskeleton. Mucus-induced encystation may represent a key mechanism for synchronizing Bd development with the arrival at the host.


Subject(s)
Amphibians , Chytridiomycota , Mucus , Amphibians/microbiology , Animals , Anura , Chytridiomycota/physiology , Mucins , Mucus/chemistry , Skin
14.
Curr Biol ; 32(6): 1247-1261.e6, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35139359

ABSTRACT

Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic ß-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and ß-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.


Subject(s)
Microtubules , Naegleria , Spindle Apparatus , Tubulin , Eukaryota , Microtubules/chemistry , Microtubules/genetics , Microtubules/physiology , Mitosis , Naegleria/cytology , Naegleria/genetics , Spindle Apparatus/chemistry , Spindle Apparatus/genetics , Tubulin/genetics
15.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36179219

ABSTRACT

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Subject(s)
Mycoses , Animals , Humans , Mycoses/microbiology , Fungi , Ecosystem , Canada , Plants
16.
Eukaryot Cell ; 9(6): 860-5, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400468

ABSTRACT

Centrioles and basal bodies are discrete structures composed of a cylinder of nine microtubule triplets and associated proteins. Metazoan centrioles can be found at mitotic spindle poles and are called basal bodies when used to organize microtubules to form the core structure of flagella. Naegleria gruberi, a unicellular eukaryote, grows as an amoeba that lacks a cytoplasmic microtubule cytoskeleton. When stressed, Naegleria rapidly (and synchronously) differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton de novo, including two basal bodies and flagella. Here, we show that Naegleria has genes encoding conserved centriole proteins. Using novel antibodies, we describe the localization of three centrosomal protein homologs (SAS-6, gamma-tubulin, and centrin-1) during the assembly of the flagellate microtubule cytoskeleton. We also used these antibodies to show that Naegleria expresses the proteins in the same order as their incorporation into basal bodies, with SAS-6 localizing first, followed by centrin and finally gamma-tubulin. The similarities between basal body assembly in Naegleria and centriole assembly in animals indicate that mechanisms of assembly, as well as structure, have been conserved throughout eukaryotic evolution.


Subject(s)
Naegleria/cytology , Protozoan Proteins/metabolism , Cell Differentiation , Centrioles/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism , Naegleria/physiology , Protozoan Proteins/genetics
17.
Curr Protoc ; 1(12): e309, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34870903

ABSTRACT

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a causative agent of chytridiomycosis, a skin disease associated with amphibian population declines around the world. Despite the major impact Bd is having on global ecosystems, much of Bd's basic biology remains unstudied. In addition to revealing mechanisms driving the spread of chytridiomycosis, studying Bd can shed light on the evolution of key fungal traits because chytrid fungi, including Bd, diverged before the radiation of the Dikaryotic fungi (multicellular fungi and yeast). Studying Bd in the laboratory is, therefore, of growing interest to a wide range of scientists, ranging from herpetologists and disease ecologists to molecular, cell, and evolutionary biologists. This protocol describes how to maintain developmentally synchronized liquid cultures of Bd for use in the laboratory, how to grow Bd on solid media, as well as cryopreservation and revival of frozen stocks. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Reviving cryopreserved Bd cultures Basic Protocol 2: Establishing synchronized liquid cultures of Bd Basic Protocol 3: Regular maintenance of synchronous Bd in liquid culture Alternate Protocol 1: Regular maintenance of asynchronous Bd in liquid culture Basic Protocol 4: Regular maintenance of synchronous Bd on solid medium Alternate Protocol 2: Starting a culture on solid medium from a liquid culture Basic Protocol 5: Cryopreservation of Bd.


Subject(s)
Chytridiomycota , Amphibians , Animals , Batrachochytrium , Ecosystem , Laboratories
18.
Curr Biol ; 31(7): R353-R355, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33848494

ABSTRACT

Cell motility is critical for animal biology, but its evolutionary history is unclear. A new study reports blebbing motility - a form of cell crawling - in the closest living relative of animals, suggesting that the unicellular ancestors of animals could crawl.


Subject(s)
Biological Evolution , Animals
19.
Curr Protoc ; 1(11): e308, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34826344

ABSTRACT

Correlating the location of subcellular structures with dynamic cellular behaviors is difficult when working with organisms that lack the molecular genetic tools needed for expressing fluorescent protein fusions. Here, we describe a protocol for fixing, permeabilizing, and staining cells in a single step while imaging on a microscope. In contrast to traditional, multi-step fixing and staining protocols that take hours, the protocol outlined here achieves satisfactory staining within minutes. This approach takes advantage of well-characterized small molecules that stain specific subcellular structures, including nuclei, mitochondria, and actin networks. Direct visualization of the entire process allows for rapid optimization of cell fixation and staining, as well as straightforward identification of fixation artifacts. Moreover, live imaging prior to fixation reveals the dynamic history of cellular features, making it particularly useful for model systems without the capacity for expressing fluorescent protein fusions. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Fixing, permeabilizing, and staining mammalian cells in one step on the microscope.


Subject(s)
Coloring Agents , Mitochondria , Animals , Microscopy, Fluorescence , Staining and Labeling
20.
Curr Biol ; 31(6): 1192-1205.e6, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33561386

ABSTRACT

Cells from across the eukaryotic tree use actin polymer networks for a wide variety of functions, including endocytosis, cytokinesis, and cell migration. Despite this functional conservation, the actin cytoskeleton has undergone significant diversification, highlighted by the differences in the actin networks of mammalian cells and yeast. Chytrid fungi diverged before the emergence of the Dikarya (multicellular fungi and yeast) and therefore provide a unique opportunity to study actin cytoskeletal evolution. Chytrids have two life stages: zoospore cells that can swim with a flagellum and sessile sporangial cells that, like multicellular fungi, are encased in a chitinous cell wall. Here, we show that zoospores of the amphibian-killing chytrid Batrachochytrium dendrobatidis (Bd) build dynamic actin structures resembling those of animal cells, including an actin cortex, pseudopods, and filopodia-like spikes. In contrast, Bd sporangia assemble perinuclear actin shells and actin patches similar to those of yeast. The use of specific small-molecule inhibitors indicate that nearly all of Bd's actin structures are dynamic and use distinct nucleators: although pseudopods and actin patches are Arp2/3 dependent, the actin cortex appears formin dependent and actin spikes require both nucleators. Our analysis of multiple chytrid genomes reveals actin regulators and myosin motors found in animals, but not dikaryotic fungi, as well as fungal-specific components. The presence of animal- and yeast-like actin cytoskeletal components in the genome combined with the intermediate actin phenotypes in Bd suggests that the simplicity of the yeast cytoskeleton may be due to evolutionary loss.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Chytridiomycota/classification , Chytridiomycota/metabolism , Evolution, Molecular , Amphibians/microbiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL