Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nano Lett ; 20(5): 3663-3672, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32320257

ABSTRACT

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10-21 L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h-1 m-2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

2.
Nanoscale ; 11(7): 3222-3228, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30706925

ABSTRACT

A broader and quantitative understanding of cell adhesion to two-dimensional carbon-based materials is needed to expand the applications of graphene and graphene oxide (GO) in tissue engineering, prosthetics, biosensing, detection of circulating cancer cells, and (photo)thermal therapy. We therefore studied the detachment kinetics of human cancer cells HeLa adhered on graphene, GO, and glass substrates using stagnation point flow on an impinging jet apparatus. HeLa cells detached easily from graphene at a force of 9.4 nN but adhered very strongly to GO. The presence of hydrophilic functional groups thus apparently enhanced the HeLa cells' adherence to the GO surface. On graphene, smaller HeLa cells adhered more strongly and detached later than cells with larger projected areas, but the opposite behavior was observed on GO. These findings reveal GO to be a suitable platform for detecting cells or establishing contacts, e.g. between graphene-based circuits/electrodes and tissues. Our experiments also show that the impinging jet method is a powerful tool for studying cellular detachment mechanisms and adhesion strength, and could therefore be very useful for investigating interactions between cells and graphene-based materials.


Subject(s)
Graphite/chemistry , Oxygen/chemistry , Cell Adhesion , HeLa Cells , Humans
3.
ACS Nano ; 11(2): 1432-1442, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28125202

ABSTRACT

Nanoscale biocompatible photoluminescence (PL) thermometers that can be used to accurately and reliably monitor intracellular temperatures have many potential applications in biology and medicine. Ideally, such nanothermometers should be functional at physiological pH across a wide range of ionic strengths, probe concentrations, and local environments. Here, we show that water-soluble N,S-co-doped carbon dots (CDs) exhibit temperature-dependent photoluminescence lifetimes and can serve as highly sensitive and reliable intracellular nanothermometers. PL intensity measurements indicate that these CDs have many advantages over alternative semiconductor- and CD-based nanoscale temperature sensors. Importantly, their PL lifetimes remain constant over wide ranges of pH values (5-12), CD concentrations (1.5 × 10-5 to 0.5 mg/mL), and environmental ionic strengths (up to 0.7 mol·L-1 NaCl). Moreover, they are biocompatible and nontoxic, as demonstrated by cell viability and flow cytometry analyses using NIH/3T3 and HeLa cell lines. N,S-CD thermal sensors also exhibit good water dispersibility, superior photo- and thermostability, extraordinary environment and concentration independence, high storage stability, and reusability-their PL decay curves at temperatures between 15 and 45 °C remained unchanged over seven sequential experiments. In vitro PL lifetime-based temperature sensing performed with human cervical cancer HeLa cells demonstrated the great potential of these nanosensors in biomedicine. Overall, N,S-doped CDs exhibit excitation-independent emission with strongly temperature-dependent monoexponential decay, making them suitable for both in vitro and in vivo luminescence lifetime thermometry.


Subject(s)
Carbon/pharmacology , Luminescence , Nanotechnology , Quantum Dots/chemistry , Temperature , Animals , Carbon/chemistry , Cell Survival/drug effects , Cells, Cultured , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Photochemical Processes
4.
Nanoscale ; 9(1): 119-127, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-27735008

ABSTRACT

Graphene oxide is one of the most studied nanomaterials owing to its huge application potential in many fields, including biomedicine, sensing, drug delivery, optical and optoelectronic technologies. However, a detailed description of the chemical composition and the extent of oxidation in graphene oxide remains a key challenge affecting its applicability and further development of new applications. Here, we report direct monitoring of the chemical oxidation of an individual graphene flake during ultraviolet/ozone treatment through in situ atomic force microscopy based on dynamic force mapping. The results showed that graphene oxidation expanded from the graphene edges to the entire graphene surface. The interaction force mapping results correlated well with X-ray photoelectron spectroscopy data quantifying the degree of chemical oxidation. Density functional theory calculations confirmed the specific interaction forces measured between a silicon tip and graphene oxide. The developed methodology can be used as a simple protocol for evaluating the chemical functionalization of other two-dimensional materials with covalently attached functional groups.

5.
Colloids Surf B Biointerfaces ; 142: 392-399, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26970828

ABSTRACT

Bacterial resistance to conventional antibiotics is currently one of the most important healthcare issues, and has serious negative impacts on medical practice. This study presents a potential solution to this problem, using the strong synergistic effects of antibiotics combined with silver nanoparticles (NPs). Silver NPs inhibit bacterial growth via a multilevel mode of antibacterial action at concentrations ranging from a few ppm to tens of ppm. Silver NPs strongly enhanced antibacterial activity against multiresistant, ß-lactamase and carbapenemase-producing Enterobacteriaceae when combined with the following antibiotics: cefotaxime, ceftazidime, meropenem, ciprofloxacin and gentamicin. All the antibiotics, when combined with silver NPs, showed enhanced antibacterial activity at concentrations far below the minimum inhibitory concentrations (tenths to hundredths of one ppm) of individual antibiotics and silver NPs. The enhanced activity of antibiotics combined with silver NPs, especially meropenem, was weaker against non-resistant bacteria than against resistant bacteria. The double disk synergy test showed that bacteria produced no ß-lactamase when treated with antibiotics combined with silver NPs. Low silver concentrations were required for effective enhancement of antibacterial activity against multiresistant bacteria. These low silver concentrations showed no cytotoxic effect towards mammalian cells, an important feature for potential medical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Metal Nanoparticles/toxicity , Silver/pharmacology , Cefotaxime/pharmacology , Ceftazidime/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Drug Synergism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression , Gentamicins/pharmacology , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/growth & development , Meropenem , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Thienamycins/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL