Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mil Med ; 184(Suppl 1): 374-378, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30901466

ABSTRACT

A recent study of all mounted vehicle underbody blast attacks found that 21% of Abbreviated Injury Scale Severity 2+ injuries in the Joint Trauma Analysis and Prevention of Injury in Combat network were injuries to the leg and ankle. To develop effective countermeasure systems for these attacks, the epidemiology and mechanisms of injury from this loading environment need to be quantified. The goal of this study was to develop a military correlate of an existing civilian case review framework, the Crash Injury Research and Engineering Network (CIREN), to consider the differences in military event types and the amount of available vehicle/attack information. Additional data fields were added to the CIREN process to cover military-specific data and "certainty" definitions in the proposed injury hypothesis were modified. To date, six group reviews have been conducted analyzing 253 injuries to the foot/ankle, tibia, femur, pelvis, and lumbar spine from 52 occupants. The familiar format and unclassified nature of the presentations allowed for the involvement of biomechanics experts from multiple disciplines.


Subject(s)
Blast Injuries/classification , Military Personnel/statistics & numerical data , Terrorism/statistics & numerical data , Warfare/statistics & numerical data , Afghan Campaign 2001- , Blast Injuries/epidemiology , Humans , Injury Severity Score , Iraq War, 2003-2011 , Military Medicine/methods , Military Medicine/trends , United States/epidemiology
2.
Stapp Car Crash J ; 62: 489-513, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30609005

ABSTRACT

During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent. The most common injury mechanisms were bending with probable vehicle contact (leg) and compression (foot). The most severe injuries sustained by Warfighters were to the pelvis, lumbar spine, and thoracic spine. These injuries were attributed to a compressive load from the seat pan that directly loaded the pelvis or created flexion in the lumbar spine. Rare types of injuries included severe abdominal organ injury, severe brain injury, and cervical spine injury. These typically occurred in conjunction with other fractures. Mitigating the frequently observed skeletal injuries using the WIAMan would have substantial long-term benefits for Warfighters.


Subject(s)
Blast Injuries , Military Personnel , Spinal Injuries , Accidents, Traffic , Biomechanical Phenomena , Explosions , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL