Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Biol Pharm Bull ; 46(12): 1769-1777, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37899248

ABSTRACT

Hepatocyte tight junctions (TJ) constituted blood-biliary barrier is the most important hepatic barrier for separating bile from the bloodstream, disruption or dysfunction of TJ barrier is involved in hepatobiliary manifestations of colitis, but the underlying mechanism is still not clear. This study aims to investigate the effect and underlying mechanism of tumor necrosis factor alpha (TNF-α) on hepatic TJ protein expression in blood-biliary barrier and identify its role in the pathogenesis of acute colitis-related cholestasis. Acute colitis rat model was induced by trinitrobenzene sulfonic acid (TNBS) intra-colonic administration. TJs expression of blood-biliary barrier was tested in colitis rats, the serum TNF-α level was also determined in order to elucidate the correlation of TNF-α and TJs. HepaRG cells were used to investigate the effect of TNF-α on TJs, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were also evaluated in rats and TNF-α treated HepaRG cells. Acute colitis was induced in rats at 5 d post TNBS, which is accompanied with cholestasis-like alteration. Serum TNF-α level was increased in colitis rats and positively correlated with the alteration of total bile acids and bilirubin, marked decrease in TJs was found in TNF-α treated HepaRG cells and the rats, down-regulated PI3K/AKT signaling pathway were also identified in TNF-α treated HepaRG cells and the rats. The study concluded that serum TNF-α mediated the down-regulation of PI3K/AKT signaling pathway, which contributed to the reduction of TJ protein expression in acute colitis-related intrahepatic cholestasis. These findings suggest that TNF-α plays an important role in the pathogenesis of intrahepatic cholestasis of colitis.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Colitis , Rats , Animals , Tumor Necrosis Factor-alpha , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tight Junctions/metabolism , Colitis/pathology , Signal Transduction , Tight Junction Proteins/metabolism
2.
Small ; 17(31): e2101388, 2021 08.
Article in English | MEDLINE | ID: mdl-34173337

ABSTRACT

Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s-1 ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO2 /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.


Subject(s)
Environmental Restoration and Remediation , Zinc Oxide , Phototaxis
3.
Nanotechnology ; 31(15): 155401, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31855853

ABSTRACT

Electrode materials that can function well in both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) are desirable for electrochemical energy storage applications, especially under high rate. In this work, a three-dimensional (3D) mesoporous γ-Fe2O3@carbon nanofiber (γ-Fe2O3@CNF) mat has been successfully synthesized by sol-gel based electrospinning and carbonization. It delivers a specific capacity of 820 mAh g-1 at 0.5 C after 250 cycles, 430 mAh g-1 at 6 C after 1000 cycles, and 222 mAh g-1 at ultrahigh rate of 60 C for LIBs, while for SIBs it delivers a specific capacity of 360 mAh g-1 at 1 C after 1000 cycles and 130 mAh g-1 at 60 C. Besides, the result of ex situ microstructure examination shows the polycrystalline nature of γ-Fe2O3 nanoparticle still exists in LIB even after 1000 cycles, while it vanishes in SIB, suggesting that the relatively larger volume expansion occurred during Na+ insertion/deinsertion, resulting in pulverization of the particles. The CNFs maintained their pristine 3D network structure after the charge/discharge, which demonstrated the critical role of a robust conductive electrode in promoting fast Li+/Na+ transportation. More importantly, they act as an electrical bridge between Li+/Na+ and γ-Fe2O3 nanoparticles, therefore suppressing the cell impedance growth and γ-Fe2O3 volume expansion, resulting in the enhancement in both cyclic and rate capability.

4.
Med Sci Monit ; 25: 5493-5500, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31378779

ABSTRACT

BACKGROUND The diagnosis of myocarditis is challenging, and the treatment is generally delayed due to misdiagnosis or missed diagnosis. Endomyocardial biopsy (EMB) is not a specific or sensitive method. A case-controlled observational study was conducted to evaluate early gadolinium enhancement (EGE) and left ventricular functional parameters on Artificial Intelligence in cine-MRI in patients with acute myocarditis. MATERIAL AND METHODS We selected 21 patients with pathologically proven acute myocarditis. We analyzed the EGE findings (total/serial number and location of positive-segments using the 17-segment model according to the American Heart Association) and clinical characteristics (symptoms, arrhythmias in ECG, coronary angiography, and EMB). All patients were divided into positive EGE and negative EGE groups to analyze left ventricular functional parameters (LVEF, FS, LVEDD, LVEDV, LVESV, LVMM, LVSV, CO, and CI) on Artificial Intelligence. RESULTS We enrolled 21 patients (11 males) with a mean age of 32.6±9.8 years (range, 16 to 51 years). Abnormalities on EGE were found in 2/3 of patients, involving 41 segments among multiple locations on the myocardium. The differences in LVEF (40.2±10.2% vs. 51.3±3.6%), LVESV (69.0±16.1ml vs. 52.5±10.6ml) and LVSV (42.6±11.4 vs. 52.8±2.8 ml) on Artificial Intelligence was statistically significant between the positive EGE and negative EGE groups (p<0.05). CONCLUSIONS Our results suggest a significant role of EGE on the basis of Lake Louise criteria in evaluating patients with clinical suspicion of acute myocarditis. Parameters, including LVEF, LVESV, and LVSV, on Artificial Intelligence, may be useful independent predictors for capillary leakage and microcirculatory disturbance in myocarditis.


Subject(s)
Myocarditis/diagnostic imaging , Myocarditis/pathology , Adolescent , Adult , Artificial Intelligence , Case-Control Studies , Contrast Media , Female , Gadolinium/analysis , Gadolinium DTPA , Heart/physiopathology , Humans , Magnetic Resonance Imaging, Cine/methods , Male , Microcirculation , Middle Aged , Myocardium/pathology , Predictive Value of Tests , Ventricular Function, Left
6.
J Cell Mol Med ; 22(11): 5504-5517, 2018 11.
Article in English | MEDLINE | ID: mdl-30091830

ABSTRACT

Sirtuin3 (SIRT3) is associated with oxidative stress and lifespan. However, the possible mechanisms underlying its influence are unknown. We hypothesized that SIRT3 increases the antioxidant capacity of aged cells and improves the efficacy of human mesenchymal stem cell (hMSC) therapy for ischaemic heart diseases in aged patients. In vitro, the antioxidant capacity of old hMSCs (O-hMSCs) was increased after SIRT3 overexpression using a gene transfection technique, while the antioxidant capacity of young hMSCs (Y-hMSCs) was decreased by SIRT3 silencing. The levels of forkhead box O3a (FoxO3a) in the nucleus, and antioxidant enzymes Mn-superoxide dismutase (MnSOD) and catalase (CAT) increased in SIRT3-overexpressed O-hMSCs while they decreased in SIRT3-silenced Y-hMSCs after oxidative stress. Following myocardial infarction in adult rats in vivo, infarct size decreased and cardiac function was significantly enhanced after cell transplantation with SIRT3 overexpressed O-hMSCs. The number of apoptotic cells decreased and the survival rate of transplanted cells increased following SIRT3 overexpression in O-hMSCs. SIRT3 protects aged hMSCs against oxidative stress by positively regulating antioxidant enzymes (MnSOD and CAT) via increasing the expression of FoxO3a in the nucleus. The efficacy of aged hMSC transplantation therapy for ischaemic heart diseases can be improved by SIRT3 overexpression.


Subject(s)
Aging/genetics , Myocardial Infarction/genetics , Myocardial Ischemia/genetics , Sirtuin 3/genetics , Aging/pathology , Animals , Antioxidants , Bone Marrow/metabolism , Catalase/genetics , Cell- and Tissue-Based Therapy/methods , Forkhead Box Protein O3/genetics , Gene Expression Regulation, Developmental , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocardial Ischemia/pathology , Myocardial Ischemia/therapy , Oxidative Stress/genetics , Plasmids/genetics , Protective Agents , Rats , Reactive Oxygen Species , Sirtuin 3/administration & dosage , Superoxide Dismutase/genetics , Transfection
7.
Int J Mol Sci ; 19(2)2018 Feb 24.
Article in English | MEDLINE | ID: mdl-29495267

ABSTRACT

Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.


Subject(s)
Agrobacterium/physiology , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Membrane Proteins/genetics , Transformation, Genetic , Arabidopsis Proteins/metabolism , DNA, Bacterial/genetics , Disease Susceptibility , Gene Expression , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Membrane Proteins/metabolism , Mutation , Organ Specificity , Plant Diseases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified , Protein Binding , Recombinant Fusion Proteins , Yeasts/genetics , Yeasts/metabolism
8.
Am J Physiol Renal Physiol ; 313(2): F273-F281, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28356293

ABSTRACT

Tubulointerstitial injury (TII) plays a crucial role in the progression of diabetic nephropathy (DN), but lack of specific and sensitive biomarkers for monitoring TII in DN management. This study is to investigate whether urinary decoy receptor 2 (uDcR2) could serve as a novel noninvasive biomarker for assessing TII in DN. We recruited 311 type 2 diabetics and 139 DN patients who were diagnosed by renal biopsy. uDcR2 levels were measured by ELISA, and renal DcR2 expression was detected immunohistochemically. Associations between uDcR2 and renal DcR2 and renal functional parameters were evaluated. Receiver operating characteristics (ROC) curve analyzed area under the curve (AUC) of uDcR2 for assessing TII. Double staining was undertaken for renal DcR2 with proximal and distal tubular markers; senescent markers p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal); and fibrotic markers collagen I and IV. We found DcR2 was primarily expressed in renal proximal tubules; uDcR2 levels were elevated per albuminuria stratum and correlated with renal functional parameters in diabetics and were associated with percentage of tubular DcR2 and TII score in DN. The uDcR2 had an AUC of 0.909 for assessing TII in DN by ROC analysis. Almost all tubular DcR2 was coexpressed with p16 and p21, and nearly more than one-half of tubular DcR2 was positive for SA-ß-gal, primarily in collagen I- and IV-positive regions of DN. Our results indicate uDcR2 could potentially serve as a novel biomarker for TII and may reflect senescence of renal proximal tubular cells in DN pathogenesis.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/urine , Kidney Tubules, Proximal/chemistry , Tumor Necrosis Factor Decoy Receptors/urine , Aged , Area Under Curve , Biomarkers/urine , Biopsy , Case-Control Studies , Cellular Senescence , Collagen Type I/analysis , Collagen Type IV/analysis , Cross-Sectional Studies , Cyclin-Dependent Kinase Inhibitor p16/analysis , Cyclin-Dependent Kinase Inhibitor p21/analysis , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Enzyme-Linked Immunosorbent Assay , Female , Fibrosis , Humans , Immunohistochemistry , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Up-Regulation , Urinalysis , beta-Galactosidase/analysis
9.
Phys Chem Chem Phys ; 19(25): 16731-16736, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28621772

ABSTRACT

The glassy transition of superparamagnetic (SPM) (r < r0) nanoparticle systems usually occurs at a very low temperature that greatly limits its application to high temperatures. In this work, we report a spin-glass-like (SGL) behavior near the Curie point (TC), i.e., T0 = 330 K, in La0.67Sr0.33MnO3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r0), resulting in a significant increase of the glass transition temperature. This SGL transition near the TC of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δTf ∝ H2/3, exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.

10.
Cryobiology ; 75: 100-105, 2017 04.
Article in English | MEDLINE | ID: mdl-28093198

ABSTRACT

BACKGROUND: Mild hypothermia has been well known as an effective way to reduce ischemia reperfusion injury (IRI), while the mechanisms are still unclear. More and more evidences have indicated that miRNAs should been involved in the regulation of IRI and expecially some miRNAs have shown temp-responsiveness for temperature variation. Therefore, the role of miR-122 in mild hypothermia pretreatment after IRI was investigated. METHODS: We established a LO2 cell anoxia-reoxygenation injury model to simulate liver IRI. Five groups of differently pretreated L02 cells were studied. ALT, AST and LDH as well as cell viability were measured. Flow cytometric analysis was used to evaluate the apoptosis. The expression of miR-122 was quantified by qRT-PCR. Insulin-like growth factor 1 receptor (IGF-1R), protein kinase B (p-AKT), AKT, forkhead box O3a (p-FOXO3a) and Caspase3 were examined using western blot analysis. RESULTS: We found that mild hypothermia pretreatment could reduce the hepatocellular injury and induce a significant down-regulation in miR-122 expression after IRI. However, those effects of protection were attenuated by overexpressed miR-122 blockade. We further demonstrated that down-regulation of miR-122 promoted IGF-1R translation and AKT activity, suppressed FOXO3a activity and Caspase3 expression after mild hypothermia pretreatment, which was abrogated by miR-122 mimic. CONCLUSION: Our data clearly demonstrate that mild hypothermia pretreatment can down-regulate miR-122 to protect hepatocytes against IRI through activation IGF-1R/AKT signaling pathway and inhibit cells apoptosis.


Subject(s)
Hepatocytes/metabolism , Hypothermia, Induced , MicroRNAs/biosynthesis , Receptor, IGF Type 1/biosynthesis , Reperfusion Injury/metabolism , Apoptosis/drug effects , Down-Regulation , Humans , Hypothermia, Induced/methods , Signal Transduction/drug effects
11.
J Virol ; 88(7): 3861-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453365

ABSTRACT

UNLABELLED: After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag(+)/Ag(-)) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2(-) (Ag(-)) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag(-) AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag(-) cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types. IMPORTANCE: Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus trafficked to the nucleus, and yet only a proportion of cells stained positive for viral antigens, thus allowing continual subculturing and passaging. The cells eventually transitioned to a state where viral genomes were maintained without viral antigen expression or virion production. Here we report that during long-term T98G infection, large numbers of genomes were maintained within all of the cells' nuclei for the first several passages (through passage 4 [P4]), even in the presence of continual cellular division. Surprisingly, genomes were maintained, albeit at a lower level, through day 41. This is decidedly longer than in any other latency model system that has been described to date. We believe that this system offers a useful model to aid in unraveling the cellular components involved in viral genome maintenance (and presumably replication) in cells carrying long-term latent genomes in a neural context.


Subject(s)
Cytomegalovirus/physiology , Neuroglia/virology , Virus Latency , Adenoviridae/physiology , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Viral , Humans
12.
J Cell Mol Med ; 18(11): 2298-310, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25210848

ABSTRACT

Sirtuin3 (SIRT3) is an important member of the sirtuin family of protein deacetylases that is localized to mitochondria and linked to lifespan extension in organisms ranging from yeast to humans. As aged cells have less regenerative capacity and are more susceptible to oxidative stress, we investigated the effect of ageing on SIRT3 levels and its correlation with antioxidant enzyme activities. Here, we show that severe oxidative stress reduces SIRT3 levels in young human mesenchymal stromal/stem cells (hMSCs). Overexpression of SIRT3 improved hMSCs resistance to the detrimental effects of oxidative stress. By activating manganese superoxide dismutase (MnSOD) and catalase (CAT), SIRT3 protects hMSCs from apoptosis under stress. SIRT3 expression, levels of MnSOD and CAT, as well as cell survival showed little difference in old versus young hMSCs under normal growth conditions, whereas older cells had a significantly reduced capacity to withstand oxidative stress compared to their younger counterparts. Expression of the short 28 kD SIRT3 isoform was higher, while the long 44 kD isoform expression was lower in young myocardial tissues compared with older ones. These results suggest that the active short isoform of SIRT3 protects hMSCs from oxidative injury by increasing the expression and activity of antioxidant enzymes. The expression of this short isoform decreases in cardiac tissue during ageing, leading to a reduced capacity for the heart to withstand oxidative stress.


Subject(s)
Apoptosis/genetics , Mesenchymal Stem Cells/metabolism , Oxidative Stress/genetics , Sirtuin 3/genetics , Aging , Antioxidants/metabolism , Catalase/genetics , Cell Line , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/pathology , Reactive Oxygen Species/metabolism , Sirtuin 3/biosynthesis , Superoxide Dismutase/genetics
13.
Zhongguo Gu Shang ; 36(1): 17-24, 2023 Jan 25.
Article in Zh | MEDLINE | ID: mdl-36653001

ABSTRACT

OBJECTIVE: To observe clinical efficacy of percutaneous endoscopic transforaminal discectomy (PETD) and target radioffrequency thermal coblation nucleoplasty(CN) on inclusive lumbar disc herniation(LDH) in different age groups, and provide a basis for clinical formulation of precise and individualized treatments. METHODS: A retrospective analysis of 219 patients with lumbar disc herniation treated with PETD and CN between January 2018 and June 2021 was performed, in which 107 patients were treated with PETD and 112 with CN. Patients were stratified by age into young group(≤45 years old), middle-aged group(>45 years old and <60 years old) and older group(≥60 years old). Before treatment, 3 days, 1 month and 6 months after treatment, visual analogue scale (VAS), Japanese Orthopaedic Association (JOA) score, infrared thermal imaging temperature difference (△T) and lumbar range of motion (ROM) were evaluated and clinical efficacy were compared in the different age groups between two treatment methods. RESULTS: ①VAS and JOA score outcomes, in the same age group and the same treatment method, the VAS and JOA scores at different time points postoperatively were obviously improved (P<0.05). For the same age group and the different treatment methods, the older group had lower VAS and higher JOA scores after PETD than after CN (P<0.05), and there was no significant difference between the young group and middle-aged group (P>0.05). There was no significant difference in VAS and JOA scores at the same time between age groups by PETD treatment (P>0.05). The VAS was higher and the JOA score was lower in older group than in young group and middle-aged group at 1, 6 months after CN treatment(P<0.05). ②△T and ROM outcomes, in the same age group and same treatment method, postoperative △T and ROM at different time points were obviously improved(P<0.05). There was no significant difference in △T between two methods of PETD and CN at the same age(P>0.05), there was no significant difference in ROM between young group and middle-aged group(P>0.05), ROM was higher after PETD treatment than after CN treatment(P<0.05). There was no significant difference in △T and ROM at the same time between age groups by PETD treatment(P>0.05). There was no significant difference in △T between age groups by CN treatment, but the ROM was smaller in older group than in young group and middle-aged group after CN treatment(P<0.05). CONCLUSION: Both PETD and CN for inclusive LDH have good efficacy, the curative benefit for older patients receiving PETD within 6 months after surgery more than CN, and CN is more appropriate for young and middle-aged patients.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Middle Aged , Humans , Aged , Intervertebral Disc Displacement/surgery , Retrospective Studies , Lumbar Vertebrae/surgery , Diskectomy, Percutaneous/methods , Treatment Outcome , Endoscopy/methods , Diskectomy/methods
14.
Front Oncol ; 12: 843598, 2022.
Article in English | MEDLINE | ID: mdl-35574338

ABSTRACT

Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.

15.
Nanoscale ; 14(38): 14073-14081, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-35993416

ABSTRACT

Turning the built-in electric field by modulating the morphology and microstructure of ferroelectric materials is considered a viable approach to enhancing the piezo-photocatalytic activity of the ferroelectric/oxide semiconductor heterojunctions. Here, hydrothermally synthesized single-crystalline BaTiO3 nanoparticles are employed to construct BaTiO3@TiO2 hybrid nanofibers by sol-gel assisted electrospinning of TiO2 nanofibers and annealing. Because of the obvious enhancement of the synergetic piezo-photocatalytic effect under both ultrasonic and ultraviolet (UV) light irradiation, the piezo-photocatalytic degradation rate constant (k) of BaTiO3@TiO2 hybrid nanofibers on methyl orange (MO) reaches 14.84 × 10-2 min-1, which is approximately seven fold that for piezocatalysis and six fold that for photocatalysis. Moreover, BaTiO3@TiO2 core-shell nanoparticles are also synthesized for comparison purposes to assess the influence of microstructure on the piezo-photocatalysis by a wet-chemical coating of TiO2 on BaTiO3 nanoparticles. Such a high piezo-photocatalytic activity is attributed to the enhancement of the piezotronic effect by the single-crystalline ferroelectric nanoparticles and the nanoconfinement effect caused by the one-dimensional boundary of nanofibers with high specific surface areas. The mechanically induced uniform local built-in electric fields originated from the single-crystalline ferroelectric nanoparticles can enhance the separation of photogenerated electron and hole pairs and promote the formation of free hydroxyl radicals, resulting in a strong piezotronic effect boosted photochemical degradation of organic dye. This work introduces the single-crystalline ferroelectrics to construct ferroelectric/oxide semiconductor heterojunctions, and the enhanced local piezotronic effect uniformly strengthens the photochemical reactivity, which offers a new option to design high-efficiency piezo-photocatalysts for pollutant treatment.

16.
ACS Appl Mater Interfaces ; 14(31): 36027-36037, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35916408

ABSTRACT

Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.

17.
Endocrinology ; 164(1)2022 11 14.
Article in English | MEDLINE | ID: mdl-36378561

ABSTRACT

The function and mechanism of SYTL5 in papillary thyroid carcinoma (PTC) are still unclear. In this research, we found that SYTL5 was significantly overexpressed in PTC tissues compared with normal thyroid tissues. SYTL5 downregulation significantly weakened the proliferative, migratory, and invasive abilities of PTC cells. In addition, upregulated SYTL5 could promote cancer progression by activating the NF-κB signaling pathway. RAC1b expression is positively associated with SYTL5, and overexpressed RAC1b abrogated the antitumor effect after SYTL5 inhibition. In conclusion, our findings identify the oncogenic role of SYTL5 in PTC by activation of the NF-κB signaling pathway, thus facilitating PTC development and progression.


Subject(s)
Carrier Proteins , Membrane Proteins , NF-kappa B , Thyroid Neoplasms , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Signal Transduction , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Membrane Proteins/genetics , Carrier Proteins/genetics
18.
Leukemia ; 35(9): 2460-2468, 2021 09.
Article in English | MEDLINE | ID: mdl-34117356

ABSTRACT

Natural killer/T-cell lymphoma (NKTL) is a sub-type of Epstein-Barr virus (EBV)-related non-Hodgkin lymphomas common in Asia and Latin America but rare elsewhere. Its pathogenesis is complex and incompletely understood. Lymphoma cells are transformed from NK- or T-cells, sometimes both. EBV-infection and subsequent genetic alterations in infected cells are central to NKTL development. Hemophagocytic syndrome is a common complication. Accurate staging is important to predict outcomes but there is controversy which system is best. More than two-thirds of NKTL lympohmas are localized at diagnosis, are frequently treated with radiation therapy only and have 5-year survival of about 70 percent. Persons with advanced NKTLs receive radiation therapy synchronously or metachronously with diverse multi-drug chemotherapy typically including L-asparginase with 5-year survival of about 40 percent. Some persons with widespread NKTL receive chemotherapy only. There are few data on safety and efficacy of high-dose therapy and a haematopoietic cell autotransplant. Immune therapies, histone deacetylase (HDAC)-inhibitors and other drugs are in early clinical trials. There are few randomized controlled clinical trials in NKTLs and no therapy strategy is clearly best; more effective therapy(ies) are needed. Some consensus recommendations are not convincingly evidence-based. Mechanisms of multi-drug resistance are considered. We discuss these issues including recent advances in our understanding of and therapy of NKTLs.


Subject(s)
Lymphoma, Extranodal NK-T-Cell/therapy , Lymphoma, T-Cell, Peripheral/therapy , Animals , Combined Modality Therapy , Humans , Lymphoma, Extranodal NK-T-Cell/pathology , Lymphoma, T-Cell, Peripheral/pathology , Prognosis
19.
ACS Appl Mater Interfaces ; 13(4): 5406-5417, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33475348

ABSTRACT

Directional motion in response to specific signals is critically important for micro/nanomotors in precise cargo transport, obstacle avoidance, collective control, and complex maneuvers. In this work, a kind of isotropic light-driven micromotor that is made of hedgehog-shaped TiO2 and functional multiwall carbon nanotubes (Hs-TiO2@FCNTs) has been developed. The FCNTs are closely entangled with Hs-TiO2 and form a close-knit matrix on the surface of Hs-TiO2, which facilitates the transfer of electrons from Hs-TiO2 to FCNTs. Due to the high redox potential of Hs-TiO2, excellent electron-hole separation efficiency by the addition of FCNTs, and isotropic morphology of the micromotor, these Hs-TiO2@FCNT micromotors show phototactic and fuel-free propulsion under unidirectional irradiation of UV light. It is the first time to demonstrate isotropic micromotors that are propelled by self-electrophoresis. The isotropy of Hs-TiO2@FCNT micromotors makes them immune to the rotational Brownian diffusion and local flows, exhibiting superior directionality. The motion direction of our micromotors can be precisely tuned by light and a velocity of 8.9 µm/s is achieved under 160 mW/cm2 UV light illumination. Photodegradation of methylene blue and active transportation of polystyrene beads are demonstrated for a proof-of-concept application of our micromotors. The isotropic design of the Hs-TiO2@FCNT micromotors with enhanced photocatalytic properties unfolds a new paradigm for addressing the limitations of directionality control and chemical fuels in the current asymmetric light-driven micromotors.

20.
Nanomaterials (Basel) ; 11(5)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063408

ABSTRACT

SnO2, a typical transition metal oxide, is a promising conversion-type electrode material with an ultrahigh theoretical specific capacity of 1494 mAh g-1. Nevertheless, the electrochemical performance of SnO2 electrode is limited by large volumetric changes (~300%) during the charge/discharge process, leading to rapid capacity decay, poor cyclic performance, and inferior rate capability. In order to overcome these bottlenecks, we develop highly ordered SnO2 nanopillar array as binder-free anodes for LIBs, which are realized by anodic aluminum oxide-assisted pulsed laser deposition. The as-synthesized SnO2 nanopillar exhibit an ultrahigh initial specific capacity of 1082 mAh g-1 and maintain a high specific capacity of 524/313 mAh g-1 after 1100/6500 cycles, outperforming SnO2 thin film-based anodes and other reported binder-free SnO2 anodes. Moreover, SnO2 nanopillar demonstrate excellent rate performance under high current density of 64 C (1 C = 782 mA g-1), delivering a specific capacity of 278 mAh g-1, which can be restored to 670 mAh g-1 after high-rate cycling. The superior electrochemical performance of SnO2 nanoarray can be attributed to the unique architecture of SnO2, where highly ordered SnO2 nanopillar array provided adequate room for volumetric expansion and ensured structural integrity during the lithiation/delithiation process. The current study presents an effective approach to mitigate the inferior cyclic performance of SnO2-based electrodes, offering a realistic prospect for its applications as next-generation energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL