Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Subject(s)
Blood Proteins , Fluorocarbons , Protein Binding , Species Specificity , Trout , Animals , Humans , Fluorocarbons/metabolism , Fluorocarbons/blood , Blood Proteins/metabolism , Cattle , Trout/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/chemistry
2.
Glob Chang Biol ; 29(5): 1390-1406, 2023 03.
Article in English | MEDLINE | ID: mdl-36448880

ABSTRACT

The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Temperature , Toxicokinetics , Water Pollutants, Chemical/analysis , Invertebrates/metabolism , Fresh Water
3.
Environ Sci Technol ; 57(41): 15598-15607, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37782849

ABSTRACT

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a widely used antioxidant in tire rubber known to enter the aquatic environment via road runoff. The associated transformation product (TP) 6-PPD quinone (6-PPDQ) causes extreme acute toxicity in some fish species (e.g., coho salmon). To interpret the species-specific toxicity, information about biotransformation products of 6-PPDQ would be relevant. This study investigated toxicokinetics of 6-PPD and 6-PPDQ in the zebrafish embryo (ZFE) model. Over 96 h of exposure, 6-PPD and 6-PPDQ accumulated in the ZFE with concentration factors ranging from 140 to 2500 for 6-PPD and 70 to 220 for 6-PPDQ. A total of 22 TPs of 6-PPD and 12 TPs of 6-PPDQ were tentatively identified using liquid chromatography coupled to high-resolution mass spectrometry. After 96 h of exposure to 6-PPD, the TPs of 6-PPD comprised 47% of the total peak area (TPA), with 4-hydroxydiphenylamine being the most prominent in the ZFE. Upon 6-PPDQ exposure, >95% of 6-PPDQ taken up in the ZFE was biotransformed, with 6-PPDQ + O + glucuronide dominating (>80% of the TPA). Among other TPs of 6-PPD, a reactive N-phenyl-p-benzoquinone imine was found. The knowledge of TPs of 6-PPD and 6-PPDQ from this study may support biotransformation studies in other organisms.


Subject(s)
Benzoquinones , Phenylenediamines , Zebrafish , Animals , Biotransformation , Chromatography, Liquid , Rubber/toxicity , Zebrafish/embryology , Zebrafish/metabolism , Embryo, Nonmammalian/metabolism , Toxicokinetics , Phenylenediamines/analysis , Phenylenediamines/pharmacokinetics , Phenylenediamines/toxicity , Benzoquinones/analysis , Benzoquinones/pharmacokinetics , Benzoquinones/toxicity
4.
Environ Sci Technol ; 57(18): 7109-7128, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37079500

ABSTRACT

Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.


Subject(s)
Flame Retardants , Organophosphates , Infant , Humans , Female , Pregnancy , Pregnant Women , Pregnancy Outcome/epidemiology , Infectious Disease Transmission, Vertical , Phosphates
5.
Environ Sci Technol ; 55(12): 7920-7929, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34086445

ABSTRACT

The exposure of ecologically critical invertebrate species to biologically active pharmaceuticals poses a serious risk to the aquatic ecosystem. Yet, the fate and toxic effects of pharmaceuticals on these nontarget aquatic invertebrates and the underlying mechanisms are poorly studied. Herein, we investigated the toxicokinetic (TK) processes (i.e., uptake, biotransformation, and elimination) of the pharmaceutical diclofenac and its biotransformation in the freshwater invertebrate Hyalella azteca. We further employed mass spectrometry-based metabolomics to assess the toxic effects of diclofenac on the metabolic functions of H. azteca exposed to environmentally relevant concentrations (10 and 100 µg/L). The TK results showed a quick uptake of diclofenac by H. azteca (maximum internal concentration of 1.9 µmol/kg) and rapid formation of the conjugate diclofenac taurine (maximum internal concentration of 80.6 µmol/kg), indicating over 40 times higher accumulation of diclofenac taurine than that of diclofenac in H. azteca. Depuration kinetics demonstrated that the elimination of diclofenac taurine was 64 times slower than diclofenac in H. azteca. Metabolomics results suggested that diclofenac inhibited prostaglandin synthesis and affected the carnitine shuttle pathway at environmentally relevant concentrations. These findings shed light on the significance of the TK process of diclofenac, especially the formation of diclofenac taurine, as well as the sublethal effects of diclofenac on the bulk metabolome of H. azteca. Combining the TK processes and metabolomics provides complementary insights and thus a better mechanistic understanding of the effects of diclofenac in aquatic invertebrates.


Subject(s)
Amphipoda , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Diclofenac/toxicity , Ecosystem , Invertebrates , Metabolomics , Toxicokinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Sci Technol ; 54(7): 4400-4408, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32036646

ABSTRACT

Biotransformation plays a crucial role in regulating the bioaccumulation potential and toxicity of organic compounds in organisms but is, in general, poorly understood for emerging contaminants. Here, we have used diclofenac as a model compound to study the impact of biotransformation on the bioaccumulation potential and toxicity in two keystone aquatic invertebrates: Gammarus pulex and Hyalella azteca. In both species, diclofenac was transformed into several oxidation products and conjugates, including two novel products, that is, diclofenac taurine conjugate (DCF-M403) and unexpected diclofenac methyl ester (DCF-M310.03). The ratios of biotransformation products to parent compound were 12-17 for DCF-M403 and 0.01-0.7 for DCF-M310.03 after 24 h exposure. Bioconcentration factors (BCFs) of diclofenac were 0.5 and 3.2 L kgww-1 in H. azteca and G. pulex, respectively, whereas BCFs of DCF-M310.03 was 164.5 and 104.7 L kgww-1, respectively, representing a 25- to 110-fold increase. Acute toxicity of DCF-M310.03 was also higher than the parent compound in both species, which correlated well with the increased bioconcentration potential. The LC50 of diclofenac in H. azteca was 216 mg L-1, while that of metabolite DCF-M310.03 was reduced to only 0.53 mg L-1, representing a 430-fold increase in acute toxicity compared to diclofenac. DCF-M403 is less toxic than its parent compound toward H. azteca, which may be linked to its slightly lower hydrophobicity. Furthermore, the transformation of diclofenac to its methyl ester derivative was explored in crude invertebrate extracts spiked with an S-adenosylmethionine cofactor, revealing possible catalysis by an S-adenosylmethionine-dependent carboxylic acid methyltransferase. Methylation of diclofenac was further detected in fish hepatocytes and human urine, indicating a broader relevance. Therefore, potentially methylated metabolites of polar contaminants should be considered for a comprehensive risk assessment in the future.


Subject(s)
Diclofenac , Water Pollutants, Chemical , Animals , Aquatic Organisms , Bioaccumulation , Biotransformation , Humans
7.
Environ Sci Technol ; 54(3): 1710-1719, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31927995

ABSTRACT

Although the exposure assessment of wastewater-derived micropollutants via chemical, bioanalytical, and modeling methods in environmental compartments is becoming more frequent, the whole-body burden (i.e., internal concentrations) in nontarget organisms is rarely assessed. An understanding of the internal concentration fluctuation is especially important when exploring the mechanistic linkage between exposure and effects. In this study, we coupled a simple river model with a first-order toxicokinetic (TK) model to predict the concentrations of wastewater-derived micropollutants in freshwater invertebrates (Gammarus spp.). We applied Monte Carlo simulations and conducted laboratory experiments to account for the uncertain input data and the lack of uptake/depuration rate constants required for the TK model. The internal concentrations in field gammarids were predicted well, and the estimates varied only by a factor of 0.1-1.9. Fast equilibrium may also be assumed such that bioconcentration factors (BCFs) are used together with the daily river dilution patterns to predict internal concentrations. While this assumption is suitable for compounds observed in our experiment to reach the steady state within 48 h in gammarids, the model overpredicted the concentrations of substances that reach this condition after longer periods. Nevertheless, this approach provides conservative estimates and simplifies the coupling of models as BCFs are slightly more accessible than the rate constants. However, if one is interested in a more detailed exposure information (e.g., peak concentration and the whole-body burden recovery after a spill), then the nonsteady-state formulation should be employed.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Rivers , Toxicokinetics , Wastewater
8.
Environ Sci Technol ; 53(24): 14083-14090, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31725273

ABSTRACT

Irrigation with treated wastewater (TWW) and application of biosolids introduce numerous pharmaceutical and personal care products (PPCPs) into agro-food systems. While the use of TWW and biosolids has many societal benefits, introduction of PPCPs in production agriculture poses potential food safety and human health risks. A comprehensive risk assessment and management scheme of PPCPs in agro-food systems is limited by multiple factors, not least the sheer number of investigated compounds and their diverse structures. Here we follow the fate of PPCPs in the water-soil-produce continuum by considering processes and variables that influence PPCP transfer and accumulation. By analyzing the steps in the soil-plant-human diet nexus, we propose a tiered framework as a path forward to prioritize PPCPs that could have a high potential for plant accumulation and thus pose greatest risk. This article examines research progress to date and current research challenges, highlighting the potential value of leveraging existing knowledge from decades of research on other chemicals such as pesticides. A process-driven scheme is outlined to derive a short list that may be used to refocus our future research efforts on PPCPs and other analogous emerging contaminants in agro-food systems.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Soil Pollutants , Water Pollutants, Chemical , Agriculture , Humans , Soil , Wastewater
9.
Anal Chem ; 90(18): 11040-11047, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30141618

ABSTRACT

Biotransformation is a notable modulator of the fate, bioaccumulation, and toxicity of contaminants in the environment. However, it is often formidable to identify unknown biotransformation products in the absence of reference standards, and this analytical challenge is particularly true for contaminants of emerging concern (CECs) that are mostly polar molecules without characteristic structures (e.g., Cl and Br) and in complex matrices such as plants. In this study, using the fibrate drug gemfibrozil as a model CEC and Arabidopsis thaliana as a model plant, we developed and demonstrated a novel analytical framework coupling deuterium stable isotope labeling with high-resolution mass spectrometry (SILAMS) in identifying plant biotransformation products. When exposed in A. thaliana cells, gemfibrozil was quickly taken up into the cells and extensively metabolized. The use of nonlabeled and deuterated gemfibrozil at a 3:1 ratio created unique diagnostic patterns in mass spectra, enabling the identification of 11 novel phase II amino acid/peptide conjugates. Similarity in mass fragmentation patterns and chromatographic behaviors was then employed to establish the probable structures. Two major metabolites were further confirmed as glutamate and glutamine conjugates using authentic standards. Most of the identified conjugates were also detected in the whole A. thaliana plant. Therefore, SILAMS offers unique advantages by excluding false matrix positives and helping discern unknown metabolites, including polar conjugates with endogenous biomolecules, with a high degree of confidence. This novel framework may be readily applied to other CECs for high-throughput metabolite screening in plants to improve our understanding of their food safety and human health risks and potential deleterious effects on other species living on plants.


Subject(s)
Arabidopsis/metabolism , Deuterium/metabolism , Environmental Pollutants/metabolism , Gemfibrozil/metabolism , Mass Spectrometry/methods , Biotransformation , Humans , Isotope Labeling/methods
10.
Environ Sci Technol ; 52(22): 13491-13500, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30298730

ABSTRACT

Aquatic organisms are consistently exposed to a mixture of micropollutants that can bioaccumulate, undergo biotransformation, and may exert mixture effects. However, little is known on the underlying mechanisms and species-specificity. Herein we investigated bioaccumulation, biotransformation and synergistic effects of azole (i.e., prochloraz) and strobilurin (i.e., azoxystrobin) fungicides in the two aquatic invertebrate species, Hyalella azteca and Gammarus pulex. Bioaccumulation of azoxystrobin was similar, whereas bioaccumulation of prochloraz was slightly different in the two species but was still significantly below the REACH criteria for bioaccumulative substances. Similar biotransformation patterns were observed in both species, and only a few unique biotransformation reactions were detected in H. azteca such as malonyl-glucose and taurine conjugation. Toxicokinetic modeling additionally indicated that biotransformation is a more important elimination pathway in H. azteca. In mixtures, no-observed-adverse-effect levels of prochloraz decreased the LC50s of azoxystrobin in both species which correlated well with increased internal azoxystrobin concentrations. This synergistic effect is partly due to the inhibition of cytochrome P450 monooxygenases by prochloraz which subsequently triggered the reduced biotransformation of azoxystrobin (lower by five folds in H. azteca). The largely similar responses in both species suggest that the easier-to-cultivate H. azteca is a promising representative of invertebrates for toxicity testing.


Subject(s)
Amphipoda , Fungicides, Industrial , Water Pollutants, Chemical , Animals , Azoles , Biotransformation
11.
Environ Sci Technol ; 52(18): 10347-10358, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30117321

ABSTRACT

Internal concentrations link external exposure to the potential effect, as they reflect what the organisms actually take up and experience physiologically. In this study, we investigated whether frequently detected risk-driving substances in water were found in the exposed organisms and if they are classified the same based on the whole body internal concentrations. Field gammarids were collected upstream and downstream of ten wastewater treatment plants in mixed land use catchments. The sampling was conducted in autumn and winter, during low flow conditions when diffuse agricultural input was reduced. The field study was complemented with laboratory and flume experiments to determine the bioaccumulation potentials of selected substances. For 32 substances, apparent bioaccumulation factors in gammarids were determined for the first time. With a sensitive multiresidue method based on online-solid phase extraction followed by liquid chromatography coupled to high resolution mass spectrometry, we detected 63 (semi-) polar organic substances in the field gammarids, showing higher concentrations downstream than upstream. Interestingly, neonicotinoids, which are particularly toxic toward invertebrates, were frequently detected and were further determined as major contributors to the toxic pressure based on the toxic unit approach integrating internal concentration and toxic potency. The total toxic pressure based on internal concentrations was substantially higher compared to when external concentrations were used. Thus, internal concentrations may add more value to the current environmental risk assessment that is typically based solely on external exposure.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Chromatography, Liquid , Environmental Monitoring , Invertebrates , Solid Phase Extraction
12.
Environ Sci Technol ; 51(11): 6071-6081, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28502169

ABSTRACT

Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and 14C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.


Subject(s)
Arabidopsis , Ibuprofen/metabolism , Naproxen/metabolism , Water Pollutants, Chemical/metabolism , Animals , Humans , Soil , Wastewater
13.
Water Res ; 255: 121504, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555786

ABSTRACT

The use of treated wastewater (TWW) for agricultural irrigation is a critical measure in advancing sustainable water management and agricultural production. However, TWW irrigation in agriculture serves as a conduit to introduce many contaminants of emerging concern (CECs) into the soil-plant-food continuum, posing potential environmental and human health risks. Currently, there are few practical options to mitigate the potential risk while promoting the safe reuse of TWW. In this greenhouse study, the accumulation of 11 commonly occurring CECs was evaluated in three vegetables (radish, lettuce, and tomato) subjected to two different irrigation schemes: whole-season irrigation with CEC-spiked water (FULL), and half-season irrigation with CEC-spiked water, followed by irrigation with clean water for the remaining season (HALF). Significant decreases (57.0-99.8 %, p < 0.05) in the accumulation of meprobamate, carbamazepine, PFBS, PFBA, and PFHxA in edible tissues were found for the HALF treatment with the alternating irrigation scheme. The CEC accumulation reduction was attributed to reduced chemical input, soil degradation, plant metabolism, and plant growth dilution. The structural equation modeling showed that this mitigation strategy was particularly effective for CECs with a high bioaccumulation potential and short half-life in soil, while less effective for those that are more persistent. The study findings demonstrate the effectiveness of this simple and on-farm applicable management strategy that can be used to minimize the potential contamination of food crops from the use of TWW and other marginal water sources in agriculture, while promoting safe reuse and contributing to environmental sustainability.

14.
Front Microbiol ; 15: 1349367, 2024.
Article in English | MEDLINE | ID: mdl-38444810

ABSTRACT

The human gut microbiota is a complex microbial community with critical functions for the host, including the transformation of various chemicals. While effects on microorganisms has been evaluated using single-species models, their functional effects within more complex microbial communities remain unclear. In this study, we investigated the response of a simplified human gut microbiota model (SIHUMIx) cultivated in an in vitro bioreactor system in combination with 96 deep-well plates after exposure to 90 different xenobiotics, comprising 54 plant protection products and 36 food additives and dyes, at environmentally relevant concentrations. We employed metaproteomics and metabolomics to evaluate changes in bacterial abundances, the production of Short Chain Fatty Acids (SCFAs), and the regulation of metabolic pathways. Our findings unveiled significant changes induced by 23 out of 54 plant protection products and 28 out of 36 food additives across all three categories assessed. Notable highlights include azoxystrobin, fluroxypyr, and ethoxyquin causing a substantial reduction (log2FC < -0.5) in the concentrations of the primary SCFAs: acetate, butyrate, and propionate. Several food additives had significant effects on the relative abundances of bacterial species; for example, acid orange 7 and saccharin led to a 75% decrease in Clostridium butyricum, with saccharin causing an additional 2.5-fold increase in E. coli compared to the control. Furthermore, both groups exhibited up- and down-regulation of various pathways, including those related to the metabolism of amino acids such as histidine, valine, leucine, and isoleucine, as well as bacterial secretion systems and energy pathways like starch, sucrose, butanoate, and pyruvate metabolism. This research introduces an efficient in vitro technique that enables high-throughput screening of the structure and function of a simplified and well-defined human gut microbiota model against 90 chemicals using metaproteomics and metabolomics. We believe this approach will be instrumental in characterizing chemical-microbiota interactions especially important for regulatory chemical risk assessments.

15.
Environ Sci Technol ; 47(18): 10389-96, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23924365

ABSTRACT

Many pesticides are chiral but used as racemic mixtures, even though their stereoisomers are often degraded stereoselectively in soils. Evaluation of degradation of chiral compounds is mostly focused on the enantioselectivity rather than diastereoselectivity/epimer preferences. In this study, we explored the diastereoselective transformation of paichongding (IPP), a novel chiral neonicotinoid with broad-spectrum insecticidal activity, to several degradation intermediates in different soils. (14)C-Labeling coupled with LC-MS/MS and high resolution MS were used to track residues of IPP and identify major transformation metabolites. The stereoisomers of IPP known as 5R, 7R-IPP (RR-IPP), 5S, 7S-IPP (SS-IPP), 5S, 7R-IPP (SR-IPP), and 5R, 7S-IPP (RS-IPP) showed diastereoselective/epimer-selective persistence in all soils except an acidic clay soil. Moreover, IPP was transformed to a range of degradation intermediates (M1-M6), which also showed significant diastereoselective and soil preferential formation. Depropylation, nitrosylation, denitration, demethylation, dehydroxylation, and ketonization contributed to IPP transformation. The diastereoselective degradation of the parent compound and formation of incomplete intermediates implies that diastereomers/epimers should be regarded as different chemicals. The approach of coupling (14)C and MS may be used as an effective tool to understand the environmental processes and risks of other man-made chiral compounds.


Subject(s)
Azabicyclo Compounds/metabolism , Insecticides/metabolism , Pyridines/metabolism , Soil Pollutants/metabolism , Aerobiosis , Azabicyclo Compounds/chemistry , Biodegradation, Environmental , Insecticides/chemistry , Pyridines/chemistry , Soil Microbiology , Soil Pollutants/chemistry , Stereoisomerism
16.
Chirality ; 25(11): 686-91, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23873706

ABSTRACT

For a novel potential commercial chiral pesticide, an independent study on the fate characteristics and residues of each stereoisomer is essential if the application rates for the pesticide and human exposure are to be reduced. The absorption and translocation behavior of a chiral insecticide, cycloxaprid, in plants treated by root immersion and blade smearing was studied using (14)C-labeling tracer techniques. With the root treatment, total absorption of (1R;8S)-cycloxaprid (RS) (12.39%) was much greater than that of (1S;8R)-cycloxaprid (SR) (3.31%) at 192 h after treatment (HAT). The mass concentrations (RS/SR) of cycloxaprid in the roots, cotyledons, leaf 1, leaf 2, and leaf 3 were 37.0/16.8, 8.3/2.8, 11.7/6.5, 5.1/4.8, and 8.0/4.7 mg kg(-1) (fresh weight), respectively, at 192 HAT at an initial concentration 1.6 mg kg(-1). With the foliar application treatment, no significant difference was observed between the total absorption of RS (3.11%) and SR (4.03%) at the end of the treatment. Both acropetal and basipetal transport of absorbed (14)C occurred and more than 71.83% of absorbed RS and 82.42% of SR remained in the treated leaf. Stereoselective absorption was observed during root uptake but not during foliar absorption.


Subject(s)
Brassica/metabolism , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/metabolism , Insecticides/chemistry , Insecticides/metabolism , Pyridines/chemistry , Pyridines/metabolism , Absorption , Biological Transport , Plant Roots/metabolism , Stereoisomerism
17.
Environ Int ; 181: 108288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918065

ABSTRACT

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Subject(s)
Environmental Monitoring , Fishes , Animals , Humans , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods
18.
Water Res ; 218: 118514, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35545009

ABSTRACT

Bioaccumulation and trophic transfer of persistent legacy contaminants have been intensively characterized, but little is known on the contaminants of emerging concern (CECs) in freshwater food webs. Herein, we comprehensively screened CECs with a focus on polar substances and further evaluated their trophic transfer behavior in selected items from the food web of Lake Templin, Germany. Weselected one plankton, two mussel, and nine fish samples covering three trophic levels. With an effective multi-residue sample preparation method and high-resolution mass spectrometry-based target, suspect, and non-target screening, we characterized 477 targets and further screened unknown features in complex biota matrices. Of the 477 targets, 145 were detected and quantified in at least one species (0.02-3640 ng/g, dry weight). Additionally, the suspect and non-target analysis with experimental mass spectra libraries and in silico techniques (MetFrag and SIRIUS4/CSI:FingerID) enabled further identification of 27 unknown compounds with 19 confirmed by reference standards. Overall, the detected compounds belong to a diverse group of chemicals, including 71 pharmaceuticals, 27 metabolites, 26 pesticides, 16 per- and polyfluoroalkyl substances (PFASs), 4 plasticizers, 3 flame retardants, 11 other industrial chemicals and 14 others. Moreover, we determined the trophic magnification factor (TMF) of 34 polar CECs with >80% detection frequency, among which 6 PFASs including perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), perfluorotridecanoic acid (PFTrA), perfluorotetradecanoic acid (PFTeA), and perfluoroundecanoic acid (PFUnA), exhibited biomagnification potential (TMF =1.8 - 4.2, p < 0.05), whereas 5 pharmaceuticals (phenazone, progesterone, venlafaxine, levamisole, and lidocaine) and 1 personal care product metabolite (galaxolidone) showed biodilution potential (TMF = 0.4 - 0.6, p < 0.05).


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Fluorocarbons/analysis , Food Chain , Lakes/analysis , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
19.
Environ Toxicol Chem ; 39(9): 1813-1825, 2020 09.
Article in English | MEDLINE | ID: mdl-32495970

ABSTRACT

Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined. Environ Toxicol Chem 2020;39:1813-1825. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Amphipoda/metabolism , Environmental Monitoring/methods , Fresh Water , Oncorhynchus mykiss/metabolism , Animals , Bioaccumulation , Kinetics , Metabolome , Organisation for Economic Co-Operation and Development , Water Pollutants, Chemical/analysis
20.
Environ Int ; 139: 105708, 2020 06.
Article in English | MEDLINE | ID: mdl-32294573

ABSTRACT

Environmental risk assessment associated with aquatic and terrestrial contamination is mostly based on predicted or measured environmental concentrations of a limited list of chemicals in a restricted number of environmental compartments. High resolution mass spectrometry (HRMS) can provide a more comprehensive picture of exposure to harmful chemicals, particularly through the retrospective analysis of digitally stored HRMS data. Using this methodology, our study characterized the contamination of various environmental compartments including 154 surface water, 46 urban effluent, 67 sediment, 15 soil, 34 groundwater, 24 biofilm, 41 gammarid and 49 fish samples at 95 sites widely distributed over the Swiss Plateau. As a proof-of-concept, we focused our investigation on antifungal azoles, a class of chemicals of emerging concern due to their endocrine disrupting effects on aquatic organisms and humans. Our results demonstrated the occurrence of antifungal azoles and some of their (bio)transformation products in all the analyzed compartments (0.1-100 ng/L or ng/g d.w.). Comparison of actual and predicted concentrations showed the partial suitability of level 1 fugacity modelling in predicting the exposure to azoles. Risk quotient calculations additionally revealed risk of exposure especially if some of the investigated rivers and streams are used for drinking water production. The case study clearly shows that the retrospective analysis of HRMS/MS data can improve the current knowledge on exposure and the related risks to chemicals of emerging concern and can be effectively employed in the future for such purposes.


Subject(s)
Azoles , Water Pollutants, Chemical , Animals , Antifungal Agents/analysis , Antifungal Agents/toxicity , Azoles/toxicity , Environmental Monitoring , Humans , Mass Spectrometry , Retrospective Studies , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL