Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37526610

ABSTRACT

Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.


Subject(s)
Drosophila melanogaster , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Heart/embryology , Single-Cell Gene Expression Analysis , Lymph Nodes/cytology , Lymph Nodes/embryology , Embryo, Nonmammalian , Embryonic Development , Biomarkers , Organogenesis
2.
Proc Natl Acad Sci U S A ; 119(49): e2209884119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454759

ABSTRACT

Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor ß2 (TRß2) in control of gradient genes, many of which are enriched for TRß2 binding sites and TRß2-regulated open chromatin. Deletion of TRß2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRß2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.


Subject(s)
Receptors, Thyroid Hormone , Retinal Cone Photoreceptor Cells , Animals , Mice , Gene Expression Regulation , Opsins/genetics , Retina , Rod Opsins/genetics
3.
J Am Chem Soc ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963153

ABSTRACT

Photocatalysis has emerged as an effective tool for addressing the contemporary challenges in organic synthesis. However, the trial-and-error-based screening of feasible substrates and optimal reaction conditions remains time-consuming and potentially expensive in industrial practice. Here, we demonstrate an electrochemical-based data-acquisition approach that derives a simple set of redox-relevant electro-descriptors for effective mechanistic analysis and performance evaluation through machine learning (ML) in photocatalytic synthesis. These electro-descriptors correlate to the quantification of shifted charge transfer processes in response to the photoirradiation and enabled construction of reactivity diagram where high-yield reactive "hot zones" can reflect subtle changes of the reaction system. For the model reaction of photocatalytic deoxygenation reaction, the influence of varying carboxylic acids (substrate A, oxidation-intended) and alkenes (substrate B, reduction-intended) and varying reaction conditions on the reaction yield can be visualized, while mathematical analysis of the electro-descriptor patterns further revealed distinct mechanistic/kinetic impacts from different substrates and conditions. Additionally, in the application of ML algorithms, the experimentally derived electro-descriptors reflect an overall redox kinetic outcome contributed from vast reaction parameters, serving as a capable means to reduce the dimensionality in the case of complex multiparameter chemical space. As a result, utilization of electro-descriptors enabled efficient and robust quantitative evaluation of chemical reactivity, demonstrating promising potential of introducing operando-relevant experimental insights in the data-driven chemistry.

4.
Gut ; 72(1): 153-167, 2023 01.
Article in English | MEDLINE | ID: mdl-35361683

ABSTRACT

OBJECTIVE: A comprehensive immune landscape for HBV infection is pivotal to achieve HBV cure. DESIGN: We performed single-cell RNA sequencing of 2 43 000 cells from 46 paired liver and blood samples of 23 individuals, including six immune tolerant, 5 immune active (IA), 3 acute recovery (AR), 3 chronic resolved and 6 HBV-free healthy controls (HCs). Flow cytometry and histological assays were applied in a second HBV cohort for validation. RESULTS: Both IA and AR were characterised by high levels of intrahepatic exhausted CD8+ T (Tex) cells. In IA, Tex cells were mainly derived from liver-resident GZMK+ effector memory T cells and self-expansion. By contrast, peripheral CX3CR1+ effector T cells and GZMK+ effector memory T cells were the main source of Tex cells in AR. In IA but not AR, significant cell-cell interactions were observed between Tex cells and regulatory CD4+ T cells, as well as between Tex and FCGR3A+ macrophages. Such interactions were potentially mediated through human leukocyte antigen class I molecules together with their receptors CANX and LILRBs, respectively, contributing to the dysfunction of antiviral immune responses. By contrast, CX3CR1+GNLY+ central memory CD8+ T cells were concurrently expanded in both liver and blood of AR, providing a potential surrogate marker for viral resolution. In clinic, intrahepatic Tex cells were positively correlated with serum alanine aminotransferase levels and histological grading scores. CONCLUSION: Our study dissects the coordinated immune responses for different HBV infection phases and provides a rich resource for fully understanding immunopathogenesis and developing effective therapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes , Liver , Humans , Liver/pathology , Antiviral Agents , T-Lymphocytes, Regulatory , Sequence Analysis, RNA , Hepatitis B virus
5.
Dev Biol ; 490: 53-65, 2022 10.
Article in English | MEDLINE | ID: mdl-35853502

ABSTRACT

Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.


Subject(s)
Drosophila Proteins , Histone-Lysine N-Methyltransferase , Histones , Nuclear Receptor Coactivators , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methylation , Mice , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism
6.
Environ Sci Technol ; 57(27): 9955-9964, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37336722

ABSTRACT

Extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae has caused a global pandemic with high prevalence in livestock and poultry, which could disseminate into the environment and humans. To curb this risk, heat-based harmless treatment of livestock waste was carried out. However, some risks of the bacterial persistence have not been thoroughly assessed. This study demonstrated that antibiotic-resistant bacteria (ARB) could survive at 55 °C through dormancy, and simultaneously transformable extracellular antibiotic resistance genes (eARGs) would be released. The ESBL-producing pathogenic Escherichia coli CM1 from chicken manure could enter a dormant state at 55 °C and reactivate at 37 °C. Dormant CM1 had stronger ß-lactam resistance, which was associated with high expression of ß-lactamase genes and low expression of outer membrane porin genes. Resuscitated CM1 maintained its virulence expression and multidrug resistance and even had stronger cephalosporin resistance, which might be due to the ultra-low expression of the porin genes. Besides, heat at 55 °C promoted the release of eARGs, some of which possessed a certain nuclease stability and heat persistence, and even maintained their transformability to an Acinetobacter baylyi strain. Therefore, dormant multidrug-resistant pathogens from livestock waste will still pose a direct health risk to humans, while the resuscitation of dormant ARB and the transformation of released eARGs will jointly promote the proliferation of ARGs and the spread of antibiotic resistance.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Livestock/metabolism , Livestock/microbiology , Hot Temperature , Angiotensin Receptor Antagonists/therapeutic use , Anti-Bacterial Agents/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , beta-Lactamases/genetics , Drug Resistance, Microbial/genetics
7.
J Am Soc Nephrol ; 31(5): 1024-1034, 2020 05.
Article in English | MEDLINE | ID: mdl-32238475

ABSTRACT

BACKGROUND: Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. METHODS: We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. RESULTS: Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm's highly organized surface structure-essential for filtration-was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. CONCLUSIONS: Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/cytology , Endocytosis , Membrane Proteins/metabolism , Multiprotein Complexes/physiology , Podocytes/metabolism , Vesicular Transport Proteins/physiology , Animals , Animals, Genetically Modified , Atrial Natriuretic Factor/metabolism , Cell Shape , Dextrans/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Silencing , Hemolymph/metabolism , Mice , Multiprotein Complexes/genetics , Podocytes/ultrastructure , Vesicular Transport Proteins/genetics
8.
J Am Soc Nephrol ; 30(5): 840-853, 2019 05.
Article in English | MEDLINE | ID: mdl-30910934

ABSTRACT

BACKGROUND: Studies have identified mutations in >50 genes that can lead to monogenic steroid-resistant nephrotic syndrome (SRNS). The NUP160 gene, which encodes one of the protein components of the nuclear pore complex nucleoporin 160 kD (Nup160), is expressed in both human and mouse kidney cells. Knockdown of NUP160 impairs mouse podocytes in cell culture. Recently, siblings with SRNS and proteinuria in a nonconsanguineous family were found to carry compound-heterozygous mutations in NUP160. METHODS: We identified NUP160 mutations by whole-exome and Sanger sequencing of genomic DNA from a young girl with familial SRNS and FSGS who did not carry mutations in other genes known to be associated with SRNS. We performed in vivo functional validation studies on the NUP160 mutations using a Drosophila model. RESULTS: We identified two compound-heterozygous NUP160 mutations, NUP160R1173× and NUP160E803K . We showed that silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by expression of the wild-type human NUP160 gene in nephrocytes. By contrast, expression of the NUP160 mutant allele NUP160R1173× completely failed to rescue nephrocyte phenotypes, and mutant allele NUP160E803K rescued only nuclear pore complex and nuclear lamin localization defects. CONCLUSIONS: Mutations in NUP160 are implicated in SRNS. Our findings indicate that NUP160 should be included in the SRNS diagnostic gene panel to identify additional patients with SRNS and homozygous or compound-heterozygous NUP160 mutations and further strengthen the evidence that NUP160 mutations can cause SRNS.


Subject(s)
Drug Resistance , Mutation/genetics , Nephrotic Syndrome/genetics , Nuclear Pore Complex Proteins/genetics , Proteinuria/genetics , Steroids/administration & dosage , Child , Female , Genetic Predisposition to Disease , Humans , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/drug therapy , Phenotype , Prognosis , Risk Assessment
9.
Am J Physiol Renal Physiol ; 317(6): F1593-F1604, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31566424

ABSTRACT

Podocyte function is tightly linked to the complex organization of its cytoskeleton and adhesion to the underlying glomerular basement membrane. Adhesion of cultured podocytes to a variety of substrates is reported to correlate with podocyte health. To identify novel genes that are important for podocyte function, we designed an in vitro genetic screen based on podocyte adhesion to plates coated with either fibronectin or soluble Fms-like tyrosine kinase-1 (sFLT1)/Fc. A genome-scale pooled RNA interference screen on immortalized human podocytes identified 77 genes that increased adhesion to fibronectin, 101 genes that increased adhesion to sFLT1/Fc, and 44 genes that increased adhesion to both substrates when knocked down. Multiple shRNAs against diphthamide biosynthesis protein 1-4 (DPH1-DPH4) were top hits for increased adhesion. Immortalized human podocyte cells stably expressing these hairpins displayed increased adhesion to both substrates. We then used CRISPR-Cas9 to generate podocyte knockout cells for DPH1, DPH2, or DPH3, which also displayed increased adhesion to both fibronectin and sFLT1/Fc, as well as a spreading defect. Finally, we showed that Drosophila nephrocyte-specific knockdown of Dph1, Dph2, and Dph4 resulted in altered nephrocyte function. In summary, we report here a novel high-throughput method to identify genes important for podocyte function. Given the central role of podocyte adhesion as a marker of podocyte health, these data are a rich source of candidate regulators of glomerular disease.


Subject(s)
Cell Adhesion/genetics , Cell Adhesion/physiology , Histidine/analogs & derivatives , Kidney/metabolism , Podocytes/metabolism , Animals , Cell Line , Drosophila , Fibronectins/metabolism , HSP40 Heat-Shock Proteins/genetics , High-Throughput Screening Assays , Histidine/biosynthesis , Humans , Intracellular Signaling Peptides and Proteins/genetics , Minor Histocompatibility Antigens/genetics , Proteins/genetics , RNA, Small Interfering , Tumor Suppressor Proteins/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
10.
Hum Mol Genet ; 26(4): 768-780, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28164240

ABSTRACT

Many genetic mutations have been identified as monogenic causes of nephrotic syndrome (NS), but important knowledge gaps exist in the roles of these genes in kidney cell biology and renal diseases. More animal models are needed to assess the functions of these genes in vivo, and to determine how they cause NS in a timely manner. Drosophila nephrocytes and human podocytes share striking similarities, but to what degree these known NS genes play conserved roles in nephrocytes remains unknown. Here we systematically studied 40 genes associated with NS, including 7 that have not previously been analysed for renal function in an animal model. We found that 85% of these genes are required for nephrocyte functions, suggesting that a majority of human genes known to be associated with NS play conserved roles in renal function from flies to humans. To investigate functional conservation in more detail, we focused on Cindr, the fly homolog of the human NS gene CD2AP. Silencing Cindr in nephrocytes led to dramatic nephrocyte functional impairment and shortened life span, as well as collapse of nephrocyte lacunar channels and effacement of nephrocyte slit diaphragms. These phenotypes could be rescued by expression of a wild-type human CD2AP gene, but not a mutant allele derived from a patient with CD2AP-associated NS. We conclude that the Drosophila nephrocyte can be used to elucidate clinically relevant molecular mechanisms underlying the pathogenesis of most monogenic forms of NS, and to efficiently generate personalized in vivo models of genetic renal diseases bearing patient-specific mutations.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Drosophila Proteins/genetics , Kidney/physiopathology , Microfilament Proteins/genetics , Nephrotic Syndrome/genetics , Animals , Disease Models, Animal , Drosophila melanogaster/genetics , Gene Silencing , Humans , Mutation , Nephrotic Syndrome/physiopathology , Phenotype , Podocytes/metabolism , Podocytes/pathology
11.
Biochem Biophys Res Commun ; 507(1-4): 59-66, 2018 12 09.
Article in English | MEDLINE | ID: mdl-30409424

ABSTRACT

Adoptive immunotherapy using chimeric antigen receptors-modified T cells (CAR-T) is a promising approach for cancer treatment. However, CARs currently applied in the clinics cannot be effectively regulated and the safety of CAR-T cell therapies remains a major concern. To improve the safety of CAR-T cells, we designed a synthetic splitting CAR (ssCAR) that can regulate T cell functions exogenously. Epidermal growth factor receptor variant III (EGFRvIII) was used as a molecular target for ssCAR. Our results indicate that both EGFRvIII and small molecule are needed for the activation of the ssCAR-T cells. AP21967 dose-dependently increased the expression of T cell activation, production of cytokines and extent of cell lysis. In conclusion, the gene switch designed in this study allows for temporal and spatial control over engineered T cells in a dose-and time-dependent manner by AP21967. Our work demonstrates the feasibility and improved safety profile of this novel treatment approach.


Subject(s)
ErbB Receptors/metabolism , Glioblastoma/immunology , Glioblastoma/therapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Dose-Response Relationship, Immunologic , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Small Molecule Libraries/pharmacology , T-Lymphocytes/drug effects , Time Factors
12.
Appl Opt ; 57(11): 2890-2899, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29714290

ABSTRACT

In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-µ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.

13.
J Am Soc Nephrol ; 28(9): 2607-2617, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28428331

ABSTRACT

Clinical studies have identified patients with nephrotic syndrome caused by mutations in genes involved in the biosynthesis of coenzyme Q10 (CoQ10), a lipid component of the mitochondrial electron transport chain and an important antioxidant. However, the cellular mechanisms through which these mutations induce podocyte injury remain obscure. Here, we exploited the striking similarities between Drosophila nephrocytes and human podocytes to develop a Drosophila model of these renal diseases, and performed a systematic in vivo analysis assessing the role of CoQ10 pathway genes in renal function. Nephrocyte-specific silencing of Coq2, Coq6, and Coq8, which are genes involved in the CoQ10 pathway that have been associated with genetic nephrotic syndrome in humans, induced dramatic adverse changes in these cells. In particular, silencing of Coq2 led to an abnormal localization of slit diaphragms, collapse of lacunar channels, and more dysmorphic mitochondria. In addition, Coq2-deficient nephrocytes showed elevated levels of autophagy and mitophagy, increased levels of reactive oxygen species, and increased sensitivity to oxidative stress. Dietary supplementation with CoQ10 at least partially rescued these defects. Furthermore, expressing the wild-type human COQ2 gene specifically in nephrocytes rescued the defective protein uptake, but expressing the mutant allele derived from a patient with COQ2 nephropathy did not. We conclude that transgenic Drosophila lines carrying mutations in the CoQ10 pathway genes are clinically relevant models with which to explore the pathogenesis of podocyte injury and could serve as a new platform to test novel therapeutic approaches.


Subject(s)
Alkyl and Aryl Transferases/genetics , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Ubiquinone/analogs & derivatives , Vitamins/pharmacology , Alkyl and Aryl Transferases/deficiency , Alleles , Animals , Autophagy/drug effects , Cell Line , Cells, Cultured , Disease Models, Animal , Gene Silencing , Humans , Mitochondria/ultrastructure , Mitophagy/drug effects , Organisms, Genetically Modified , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Ubiquinone/biosynthesis , Ubiquinone/genetics , Ubiquinone/pharmacology , Vitamins/biosynthesis
14.
J Am Soc Nephrol ; 28(4): 1106-1116, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27864430

ABSTRACT

People of African ancestry carrying certain APOL1 mutant alleles are at elevated risk of developing renal diseases. However, the mechanisms underlying APOL1-associated renal diseases are unknown. Because the APOL1 gene is unique to humans and some primates, new animal models are needed to understand the function of APOL1 in vivo We generated transgenic Drosophila fly lines expressing the human APOL1 wild type allele (G0) or the predominant APOL1 risk allele (G1) in different tissues. Ubiquitous expression of APOL1 G0 or G1 in Drosophila induced lethal phenotypes, and G1 was more toxic than was G0. Selective expression of the APOL1 G0 or G1 transgene in nephrocytes, fly cells homologous to mammalian podocytes, induced increased endocytic activity and accumulation of hemolymph proteins, dextran particles, and silver nitrate. As transgenic flies with either allele aged, nephrocyte function declined, cell size increased, and nephrocytes died prematurely. Compared with G0-expressing cells, however, G1-expressing cells showed more dramatic phenotypes, resembling those observed in cultured mammalian podocytes overexpressing APOL1-G1. Expressing the G0 or G1 APOL1 transgene in nephrocytes also impaired the acidification of organelles. We conclude that expression of an APOL1 transgene initially enhances nephrocyte function, causing hypertrophy and subsequent cell death. This new Drosophila model uncovers a novel mechanism by which upregulated expression of APOL1-G1 could precipitate renal disease in humans. Furthermore, this model may facilitate the identification of APOL1-interacting molecules that could serve as new drug targets to treat APOL1-associated renal diseases.


Subject(s)
Apolipoproteins/genetics , Cell Death/physiology , Kidney Diseases/genetics , Kidney/pathology , Lipoproteins, HDL/genetics , Alleles , Animals , Animals, Genetically Modified , Apolipoprotein L1 , Cells, Cultured , Disease Models, Animal , Disease Progression , Drosophila , Gene Expression Regulation , Humans , Hypertrophy/genetics , Kidney Diseases/pathology
15.
Dev Biol ; 413(2): 188-98, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26994311

ABSTRACT

The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/ß-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction remains unclear. We observed high levels of Wnt4 gene expression in Drosophila ostia progenitor cells, immediately prior to morphological differentiation of these cells associated with ostia formation. This differentiation was blocked in Wnt4 mutants and in flies expressing canonical Wnt signaling pathway inhibitors but not inhibitors of the planar cell polarity pathway. High levels of Wnt4 dependent activation of a canonical Wnt signaling reporter was observed specifically in ostia progenitor cells. In vertebrate valve formation Wnt signaling is active in cells undergoing early endothelial-mesenchymal transition (EMT) and the Wnt9 homolog of Drosophila Wnt4 is expressed in valve progenitors. In demonstrating an essential role for Wnt4 in ostia development we have identified similarities between molecular and cellular events associated with early EMT during vertebrate valve development and the differentiation and partial delamination of ostia progenitor cells in the process of ostia formation.


Subject(s)
Drosophila Proteins/physiology , Drosophila/embryology , Glycoproteins/physiology , Wnt Proteins/physiology , Animals , Heart/embryology , Morphogenesis , Signal Transduction , Stem Cells/cytology
16.
Cell Tissue Res ; 368(3): 615-627, 2017 06.
Article in English | MEDLINE | ID: mdl-28180992

ABSTRACT

The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/enzymology , rab GTP-Binding Proteins/metabolism , Animals , Cell Size , Cytoplasmic Vesicles , Drosophila/cytology , Drosophila/ultrastructure , Female , Gene Silencing , Kidney/cytology , Kidney/enzymology , Kidney/ultrastructure , Lysosomes/enzymology , Male , Podocytes/enzymology , Podocytes/ultrastructure , rab GTP-Binding Proteins/genetics
17.
J Biol Chem ; 289(47): 32469-80, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25296752

ABSTRACT

Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor ß gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORß2 in photoreceptors and RORß1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORß2 or RORß1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORß isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORß isoforms in rod differentiation. Unexpectedly, RORß2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORß2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Eye Proteins/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Animals , Animals, Newborn , Basic-Leucine Zipper Transcription Factors/genetics , Blotting, Western , Cell Differentiation/genetics , Eye Proteins/genetics , Feedback, Physiological , Gene Expression Regulation, Developmental , In Situ Hybridization , Mice, Knockout , Microscopy, Confocal , Nuclear Receptor Subfamily 1, Group F, Member 2/genetics , Opsins/genetics , Opsins/metabolism , Promoter Regions, Genetic/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Retina/embryology , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
Environ Int ; 186: 108574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507933

ABSTRACT

The emergence of antibiotic-resistant bacteria poses a huge threat to the treatment of infections. Antimicrobial peptides are a class of short peptides that widely exist in organisms and are considered as potential substitutes for traditional antibiotics. Here, we use metagenomics combined with machine learning to find antimicrobial peptides from environmental metagenomes and successfully obtained 16,044,909 predicted AMPs. We compared the abundance of potential antimicrobial peptides in natural environments and engineered environments, and found that engineered environments also have great potential. Further, we chose sludge as a typical engineered environmental sample, and tried to mine antimicrobial peptides from it. Through metaproteome analysis and correlation analysis, we mined 27 candidate AMPs from sludge. We successfully synthesized 25 peptides by chemical synthesis, and experimentally verified that 21 peptides had antibacterial activity against the 4 strains tested. Our work highlights the potential for mining new antimicrobial peptides from engineered environments and demonstrates the effectiveness of mining antimicrobial peptides from sludge.


Subject(s)
Antimicrobial Peptides , Machine Learning , Metagenome , Sewage , Sewage/microbiology , Antimicrobial Peptides/pharmacology , Metagenomics , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects
19.
Waste Manag ; 183: 1-9, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38703551

ABSTRACT

Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 104/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used.


Subject(s)
Composting , Enterococcus , Sewage , Composting/methods , Sewage/microbiology , Enterococcus/genetics , Enterococcus/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Soil Microbiology
20.
Am J Clin Pathol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527168

ABSTRACT

OBJECTIVES: Distinguishing between sporadic and germline/mosaic NF2-related schwannomatosis is important to ensure that patients have appropriate long-term care. With this report, we describe a unique case of a patient with 4 ipsilateral schwannomas and identify a combination of sequencing modalities that can accurately diagnose mosaic NF2-related schwannomatosis. METHODS: We present a 32-year-old woman with a familial history of vestibular schwannoma in her father and right-sided schwannomas involving the apical and basal turns of cochlea, lateral semicircular canal, and internal auditory canal (IAC). Genetic analysis of blood and frozen tissue from 2 tumors (intralabyrinthine and IAC tumors) was performed using next-generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), and optical genome mapping (OGM). RESULTS: Germline testing for NF2, LZTR1, and SMARCB1 was negative. Tumor genetic testing revealed a shared NF2 pathogenic variant between the 2 tumors ("first hit") but distinct "second hit" NF2 variants, including mosaic loss of chromosome 22 in the IAC tumor seen only with OGM, consistent with mosaic NF2-related schwannomatosis. CONCLUSIONS: Multimodality sequencing, including NGS, MLPA, and OGM, was required to ensure appropriate diagnosis of mosaic NF2-related schwannomatosis in this patient. A similar approach can be used for other patients with multiple ipsilateral tumors and suspected tumor predisposition.

SELECTION OF CITATIONS
SEARCH DETAIL