Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Periodontal Res ; 59(3): 530-541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501357

ABSTRACT

OBJECTIVE: The purpose of this study is to investigate regenerative process by immunohistochemical analysis and evaluate periodontal tissue regeneration following a topical application of BDNF to inflamed 3-wall intra-bony defects. BACKGROUND: Brain-derived neurotrophic factor (BDNF) plays a role in the survival and differentiation of central and peripheral neurons. BDNF can regulate the functions of non-neural cells, osteoblasts, periodontal ligament cells, endothelial cells, as well as neural cells. Our previous study showed that a topical application of BDNF enhances periodontal tissue regeneration in experimental periodontal defects of dog and that BDNF stimulates the expression of bone (cementum)-related proteins and proliferation of human periodontal ligament cells. METHODS: Six weeks after extraction of mandibular first and third premolars, 3-wall intra-bony defects were created in mandibular second and fourth premolars of beagle dogs. Impression material was placed in all of the artificial defects to induce inflammation. Two weeks after the first operation, BDNF (25 and 50 µg/mL) immersed into atelocollagen sponge was applied to the defects. As a control, only atelocollagen sponge immersed in saline was applied. Two and four weeks after the BDNF application, morphometric analysis was performed. Localizations of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by immunohistochemical analysis. RESULTS: Two weeks after application of BDNF, periodontal tissue was partially regenerated. Immunohistochemical analyses revealed that cells on the denuded root surface were positive with OPN and PCNA. PCNA-positive cells were also detected in the soft connective tissue of regenerating periodontal tissue. Four weeks after application of BDNF, the periodontal defects were regenerated with cementum, periodontal ligament, and alveolar bone. Along the root surface, abundant OPN-positive cells were observed. Morphometric analyses revealed that percentage of new cementum length and percentage of new bone area of experimental groups were higher than control group and dose-dependently increased. CONCLUSION: These findings suggest that BDNF could induce cementum regeneration in early regenerative phase by stimulating proliferation of periodontal ligament cells and differentiation into periodontal tissue cells, resulting in enhancement of periodontal tissue regeneration in inflamed 3-wall intra-bony defects.


Subject(s)
Alveolar Bone Loss , Brain-Derived Neurotrophic Factor , Cementogenesis , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/therapeutic use , Dogs , Cementogenesis/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Osteopontin , Periodontal Ligament/pathology , Periodontal Ligament/drug effects , Male , Guided Tissue Regeneration, Periodontal/methods , Bone Regeneration/drug effects , Dental Cementum/pathology , Dental Cementum/drug effects , Periodontium/pathology , Periodontium/metabolism , Mandible , Cell Proliferation/drug effects
2.
Oral Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656694

ABSTRACT

OBJECTIVE: To investigate the production of leucine-rich α-2-glycoprotein-1 (LRG1) in periodontitis patients and its effectiveness as a new diagnostic marker for periodontitis. SUBJECTS AND METHODS: In vitro experiments were conducted to analyze LRG1 mRNA expression in human gingival epithelial cells and fibroblasts via quantitative real-time PCR. In vivo experiments were conducted to analyze LRG1 localization in periodontitis patients. The correlation between the serum LRG1 levels and alveolar bone resorption in the mouse periodontitis model was also investigated. RESULTS: A positive correlation existed between the periodontal inflamed surface area and serum LRG1 levels (Spearman's rank correlation coefficient: 0.60). LRG1 mRNA expression in human gingival epithelial cells and fibroblasts was upregulated by Porphyromonas gingivalis stimulation or tumor necrosis factor-α stimulation. Interleukin-6 in human gingival epithelial cells and fibroblasts induced the production of LRG1 and transforming growth factor-ß. LRG1 levels in the periodontal tissue and serum in the periodontitis model were higher than those in control mice. LRG1 local administration resulted in alveolar bone resorption, whereas the administration of interleukin-6R antibody inhibited bone resorption. CONCLUSIONS: LRG1 levels in serum and periodontal tissue are upregulated in periodontitis and are implicated in periodontal tissue destruction through interleukin-6 production.

3.
J Periodontal Res ; 58(1): 83-96, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36346011

ABSTRACT

OBJECTIVE: This study aimed to determine the regulatory mechanism of bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation mediated by humoral factors derived from human periodontal ligament (HPL) cells and human gingival fibroblasts (HGFs). We analyzed histone deacetylase (HDAC) expression and activity involved in BM-MSC differentiation and determined their regulatory effects in co-cultures of BM-MSCs with HPL cells or HGFs. BACKGROUND: BM-MSCs can differentiate into various cell types and can, thus, be used in periodontal regenerative therapy. However, the mechanism underlying their differentiation remains unclear. Transplanted BM-MSCs are affected by periodontal cells via direct contact or secretion of humoral factors. Therefore, their activity is regulated by humoral factors derived from HPL cells or HGFs. METHODS: BM-MSCs were indirectly co-cultured with HPL cells or HGFs under osteogenic or growth conditions and then analyzed for osteogenesis, HDAC1 and HDAC2 expression and activity, and histone H3 acetylation. BM-MSCs were treated with trichostatin A, or their HDAC1 or HDAC2 expression was silenced or overexpressed during osteogenesis. Subsequently, they were evaluated for osteogenesis or the effects of HDAC activity. RESULTS: BM-MSCs co-cultured with HPL cells or HGFs showed suppressed osteogenesis, HDAC1 and HDAC2 expression, and HDAC phosphorylation; however, histone H3 acetylation was enhanced. Trichostatin A treatment remarkably suppressed osteogenesis, decreasing HDAC expression and enhancing histone H3 acetylation. HDAC1 and HDAC2 silencing negatively regulated osteogenesis in BM-MSCs to the same extent as that achieved by indirect co-culture with HPL cells or HGFs. Conversely, their overexpression positively regulated osteogenesis in BM-MSCs. CONCLUSION: The suppressive effects of HPL cells and HGFs on BM-MSC osteogenesis were regulated by HDAC expression and histone H3 acetylation to a greater extent than that mediated by HDAC activity. Therefore, regulation of HDAC expression has prospects in clinical applications for effective periodontal regeneration, mainly, bone regeneration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Bone Marrow/metabolism , Cell Differentiation , Cells, Cultured , Coculture Techniques , Fibroblasts/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Histones/metabolism , Periodontal Ligament
4.
FASEB J ; 35(7): e21693, 2021 07.
Article in English | MEDLINE | ID: mdl-34109683

ABSTRACT

Drug-induced gingival overgrowth (DIGO) is a side effect of cyclosporine A (CsA), nifedipine (NIF), and phenytoin (PHT). Nuclear receptor 4A1 (NR4A1) plays a role in fibrosis in multiple organs. However, the relationship between NR4A1 and DIGO remains unclear. We herein investigated the involvement of NR4A1 in DIGO. In the DIGO mouse model, CsA inhibited the up-regulation of Nr4a1 expression induced by periodontal disease (PD) in gingival tissue, but not that of Col1a1 and Pai1. We detected gingival overgrowth (GO) in Nr4a1 knock out (KO) mice with PD. A NR4A1 agonist inhibited the development of GO in DIGO model mice. TGF-ß increased Col1a1 and Pai1 expression levels in KO mouse gingival fibroblasts (mGF) than in wild-type mice, while the overexpression of NR4A1 in KO mGF suppressed the levels. NR4A1 expression levels in gingival tissue were significantly lower in DIGO patients than in PD patients. We also investigated the relationship between nuclear factor of activated T cells (NFAT) and NR4A1. NFATc3 siRNA suppressed the TGF-ß-induced up-regulation of NR4A1 mRNA expression in human gingival fibroblasts (hGF). CsA suppressed the TGF-ß-induced translocation of NFATc3 into the nuclei of hGF. Furthermore, NIF and PHT also decreased NR4A1 mRNA expression levels and suppressed the translocation of NFATc3 in hGF. We confirmed that CsA, NIF, and PHT reduced cytosolic calcium levels increased by TGF-ß, while CaCl2 enhanced the TGF-ß-up-regulated NR4A1 expression. We propose that the suppression of the calcium-NFATc3-NR4A1 cascade by these three drugs plays a role in the development of DIGO.


Subject(s)
Calcium/metabolism , Cyclosporine/toxicity , Gingiva/pathology , Immunosuppressive Agents/toxicity , Nuclear Receptor Subfamily 4, Group A, Member 1/physiology , Animals , Cells, Cultured , Disease Models, Animal , Female , Gingiva/drug effects , Gingiva/metabolism , Immunosuppressive Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
5.
Differentiation ; 112: 47-57, 2020.
Article in English | MEDLINE | ID: mdl-31951879

ABSTRACT

BACKGROUND: The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS: Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS: hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION: Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.


Subject(s)
Cell Adhesion Molecules/genetics , Cell Differentiation/genetics , MicroRNAs/genetics , Periodontal Ligament/growth & development , SOXC Transcription Factors/genetics , Cell Lineage/genetics , Coculture Techniques , Dental Cementum/cytology , Dental Cementum/metabolism , Gene Expression Regulation, Developmental , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Regenerative Endodontics/trends
6.
Biochem Biophys Res Commun ; 525(4): 889-894, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32171527

ABSTRACT

A sophisticated and delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts regulates bone metabolism. Optineurin (OPTN) is a gene involved in primary open-angle glaucoma and amyotrophic lateral sclerosis. Although its function has been widely studied in ophthalmology and neurology, recent reports have shown its possible involvement in bone metabolism through negative regulation of osteoclast differentiation. However, little is known about the role of OPTN in osteoblast function. Here, we demonstrated that OPTN controls not only osteoclast but also osteoblast differentiation. Different parameters involved in osteoblastogenesis and osteoclastogenesis were assessed in Optn-/- mice. The results showed that osteoblasts from Optn-/- mice had impaired alkaline phosphatase activity, defective mineralized nodules, and inability to support osteoclast differentiation. Moreover, OPTN could bind to signal transducer and activator of transcription 1 (STAT1) and regulate runt-related transcription factor 2 (RUNX2) nuclear localization by modulating STAT1 levels in osteoblasts. These data suggest that OPTN is involved in bone metabolism not only by regulating osteoclast function but also by regulating osteoblast function by mediating RUNX2 nuclear translocation via STAT1.


Subject(s)
Cell Cycle Proteins/metabolism , Membrane Transport Proteins/metabolism , Osteoblasts/cytology , Osteogenesis/physiology , STAT1 Transcription Factor/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Differentiation/physiology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Mice, Mutant Strains , Osteoclasts/cytology , Osteoclasts/metabolism
7.
J Hum Genet ; 65(10): 841-846, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32424308

ABSTRACT

Aggressive periodontitis (AgP) occurs at an early age and causes rapid periodontal tissue destruction. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) encodes a protein with two caspase recruitment domains and eleven leucine-rich repeats. This protein is expressed mainly in peripheral blood leukocytes and is involved in immune response. NOD2 variants have been associated with increased susceptibility to Crohn's disease, and recently, NOD2 was reported as a causative gene in AgP. The present study aimed to identify potential NOD2 variants in an AgP cohort (a total of 101 patiens: 37 patients with positive family histories and 64 sporadic patients). In the familial group, six patients from two families had a reported heterozygous missense variant (c.C931T, p.R311W). Four patients in the sporadic group had a heterozygous missense variant (c.C1411T, p.R471C), with no reported association to the disease. Overall, two NOD2 variants, were identified in 10% of our AgP cohort. These variants were different from the major variants reported in Crohn's disease. More cases need to be investigated to elucidate the role of NOD2 variants in AgP pathology.


Subject(s)
Aggressive Periodontitis/genetics , Mutation, Missense , Nod2 Signaling Adaptor Protein/genetics , Adult , Aggressive Periodontitis/diagnostic imaging , Aggressive Periodontitis/immunology , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Nod2 Signaling Adaptor Protein/chemistry , Pedigree , Protein Domains
8.
Clin Oral Investig ; 23(11): 4099-4105, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30771001

ABSTRACT

OBJECTIVES: Periodontal inflammation is regarded as a risk factor for drug-induced gingival overgrowth (DIGO). In order to elucidate the involvement of periodontal inflammation in DIGO, the periodontal status of subjects who do not develop DIGO despite receiving causative drugs (non-responders) needs to be examined. Therefore, the aim of the present study which was a pilot study was to assess periodontal inflammatory variables in responders (calcium channel blocker induced-GO patients), non-responders, and patients who did not receive causative drugs (non-consumers). MATERIALS AND METHODS: The following parameters were measured: (1) existence of gingival overgrowth, (2) number of teeth, (3) mean periodontal pocket depth (PPD), and (4) percentage of positive sites for bleeding on probing (BOP). The periodontal inflamed surface area (PISA) and periodontal epithelial surface area (PESA) and the PISA/PESA ratio which indicated the degree of periodontal inflammation in each patient were also used to evaluate periodontal inflammation. RESULTS: Thirteen responders, 32 non-responders, and 83 non-consumers were included in the analyses. The mean PPD, percentage of BOP, PESA, and PISA, and the PISA/PESA ratio were significantly higher in responders than in non-responders and non-consumers (p < 0.01). The BOP, PISA, and PISA/PESA ratio were significantly lower in non-responders than in non-consumers (p < 0.05). A positive correlation was found between PPD and age in non-consumers. On the other hand, a negative correlation was noted between PPD and age in non-responders. CONCLUSIONS: Periodontal inflammation may be associated with the initiation of DIGO. CLINICAL RELEVANCE: It could be speculated that periodontal therapy before the administration of calcium channel blockers may prevent the development of gingival overgrowth.


Subject(s)
Calcium Channel Blockers , Gingival Overgrowth , Inflammation , Calcium Channel Blockers/therapeutic use , Cross-Sectional Studies , Female , Gingival Overgrowth/etiology , Humans , Japan , Pilot Projects
9.
Int J Mol Sci ; 20(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443173

ABSTRACT

Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.


Subject(s)
Bone Regeneration/physiology , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Bone Regeneration/genetics , Cell Differentiation/physiology , Male , Mice , Mice, SCID , Osteogenesis/physiology , Tissue Engineering , X-Ray Microtomography
10.
PLoS Pathog ; 12(1): e1005349, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26741490

ABSTRACT

HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Receptors, Immunologic/immunology , Animals , B7-H1 Antigen/immunology , Cell Separation , DNA, Viral/analysis , Disease Progression , Flow Cytometry , Humans , Lymphocyte Activation/immunology , Macaca mulatta , RNA, Viral/analysis , Simian Acquired Immunodeficiency Syndrome/immunology
11.
Cell Microbiol ; 18(12): 1723-1738, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27121139

ABSTRACT

Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor ß (TGF-ß). However, the molecular mechanisms by which microbes induce the activation of TGF-ß remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF-ß receptor (TGF-ßR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF-ßR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF-ß by cooperating with integrin. Accordingly, we hypothesized that Omp29-induced actin rearrangements via FAK activity would enhance the activation of TGF-ß, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF-ßR/smad2 signalling and decreased active TGF-ß protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF-ßR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinß1 expression by siRNA transfection attenuated TGF-ßR/smad2 signalling activity and reduction of TGF-ß levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinß1, which is associated with TGF-ß signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29-induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinß1/FAK signalling-dependent TGF-ß release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF-ßR/smad2 pathway.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Bacterial Outer Membrane Proteins/genetics , Epithelial Cells/microbiology , Fibronectins/genetics , Focal Adhesion Kinase 1/genetics , Integrin beta1/genetics , Transforming Growth Factor beta/genetics , Aggregatibacter actinomycetemcomitans/metabolism , Apoptosis/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/pharmacology , Cell Line, Transformed , Cytochalasin D/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibronectins/metabolism , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation , Gingiva/metabolism , Gingiva/microbiology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Host-Pathogen Interactions , Humans , Integrin beta1/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Signal Transduction , Smad2 Protein/antagonists & inhibitors , Smad2 Protein/genetics , Smad2 Protein/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
12.
J Cell Biochem ; 117(7): 1543-55, 2016 07.
Article in English | MEDLINE | ID: mdl-26581032

ABSTRACT

Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Gingiva/metabolism , MAP Kinase Signaling System/drug effects , Periodontal Ligament/metabolism , Cell Line, Transformed , Epithelial Cells/cytology , Gingiva/cytology , Humans , Periodontal Ligament/cytology
13.
Cell Physiol Biochem ; 39(5): 1777-1786, 2016.
Article in English | MEDLINE | ID: mdl-27744428

ABSTRACT

BACKGROUND: An investigation of the mechanisms underlying the production of inflammatory cytokines through the stimulation of microorganisms on gingival epithelial cells may provide insights into the pathogenesis of the initiation of periodontitis. Lipid rafts, microdomains in the cell membrane, include a large number of receptors, and are centrally involved in signal transduction. We herein examined the involvement of lipid rafts in the expression of interleukin (IL-6) and IL-8 in gingival epithelial cells stimulated by periodontal pathogens. METHODS: OBA9, a human gingival cell line, was stimulated by Aggregatibacter actinomycetemcomitans or tumor necrosis factor (TNF)-α in the presence of methyl-ß-cyclodextrin (MßCD). RESULTS: A. actinomycetemcomitans or TNF-α increased IL-8 and IL-6 mRNA levels, and promoted the phosphorylation of ERK and p38 MAP kinase in OBA9. The pretreatment with MßCD abolished increases in IL-6 and IL-8 mRNA levels and the phosphorylation induced by A. actinomycetemcomitans, but did not suppress the response induced by TNF-α. The transfection of TLR4 inhibited A. actinomycetemcomitans-induced increases in IL-8 and IL-6 mRNA levels. Confocal microscopy revealed that MßCD inhibited the mobilization of TLR4 into lipid rafts. CONCLUSION: The mobilization of TLR4 into lipid rafts is involved in the expression of inflammatory cytokines and phosphorylation of MAP kinase in human gingival epithelial cells stimulated by A. actinomycetemcomitans.


Subject(s)
Aggregatibacter actinomycetemcomitans/growth & development , Epithelial Cells/immunology , Host-Pathogen Interactions , Membrane Microdomains/immunology , Toll-Like Receptor 4/genetics , p38 Mitogen-Activated Protein Kinases/immunology , Aggregatibacter actinomycetemcomitans/metabolism , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Gene Expression Regulation , Gingiva/immunology , Gingiva/microbiology , Gingiva/pathology , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Membrane Microdomains/drug effects , Membrane Microdomains/microbiology , Membrane Microdomains/pathology , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Phosphorylation , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/pharmacology , beta-Cyclodextrins/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics
14.
J Immunol ; 193(11): 5576-83, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25348621

ABSTRACT

The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.


Subject(s)
Acquired Immunodeficiency Syndrome/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Membrane Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , Acquired Immunodeficiency Syndrome/therapy , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Cytotoxicity, Immunologic , Disease Models, Animal , Gene Expression Regulation , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunologic Memory , Macaca mulatta , Membrane Proteins/genetics , Molecular Sequence Data , Molecular Targeted Therapy , Programmed Cell Death 1 Receptor/metabolism , Simian Acquired Immunodeficiency Syndrome/therapy , Viral Load , Virus Replication
15.
Eur J Oral Sci ; 124(2): 141-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26872052

ABSTRACT

We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVß3, and integrin α2ß1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration.


Subject(s)
Periodontium , Animals , Brain-Derived Neurotrophic Factor , Dental Cementum , Dogs , Humans , Periodontal Ligament , Regeneration
16.
Cytokine ; 75(1): 165-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25882870

ABSTRACT

Periodontitis is the most prevalent infectious disease caused by periodontopathic bacteria and is also a chronic inflammatory disease. Gingival crevicular fluid (GCF) is an inflammatory exudate that seeps into the gingival crevices or periodontal pockets around teeth with inflamed gingiva, and contains various materials including leukocytes and cytokines. Since gingival epithelial cells, which form a barrier against bacterial challenges, are affected by GCF, cytokines or other materials contained within GCF are engaged in the maintenance and disruption of the epithelial barrier. Accordingly, its compositional pattern has been employed as a reliable objective index of local inflammation. Transforming growth factor ß1 (TGF-ß1) levels in GCF were previously shown to be markedly higher in patients with periodontitis than in healthy subject. However, it currently remains unclear how TGF-ß1 affects gingival epithelial cell growth or apoptosis; therefore, elucidating the mechanism responsible may lead to a deeper understanding of pathogenic periodontitis. In the present study, the human gingival epithelial cell line, OBA9 cells were stimulated with recombinant TGF-ß1. Apoptosis-related protein levels were determined by Western blotting. Caspase-3/7 activity was measured with a Caspase-Glo assay kit. Surviving and apoptotic cells were detected using an MTS assay and TUNEL staining, respectively. TGF-ßRI siRNA and smad2 siRNA were transfected into cells using the lipofectamine RNAiMAX reagent. TGF-ß1 elevated caspase-3 activity and the number of TUNEL-positive apoptotic cells in OBA9 cells. Furthermore, while the levels of the pro-apoptotic proteins Bax, Bak, Bim, and Bad were increased in OBA9 cells stimulated with TGF-ß1, the TGF-ß1 treatment also decreased the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL in a time-dependent manner. Additionally, TGF-ß1 up-regulated the protein levels of cleaved caspase-9. These results indicated that TGF-ß1-induced apoptosis was involved in a mitochondria-related intrinsic pathway. TGF-ß1 phosphorylated smad2 in OBA9 cells and this phosphorylation was clearly reduced by SB431542 (a TGF-ß type I receptor inhibitor). Consistent with this result, SB431542 or smad2 siRNA-induced reductions in smad2 protein expression levels attenuated TGF-ß1-induced apoptosis. On the other hand, the ligation of TGF-ß1 on its receptor also stimulated the phosphorylation of Erk and Akt, which are smad2-independent pathways. However, the inhibition of Erk/Akt signaling pathways by U0126, a MEK-Erk inhibitor and LY294002, a PI3Kinase-Akt inhibitor, augmented TGF-ß1-induced apoptosis in OBA9 cells. Taken together, the results of present study demonstrated that TGF-ß1 activated both the smad2 and Erk/Akt cascades via its receptor on gingival epithelial cells, even though these two pathways have opposite roles in cell death and survival, and the culmination of these signaling events induced mitochondria-dependent apoptosis in gingival epithelial cells. Based on the results of the present study, we herein proposed for the first time, that TGF-ß1 is a novel target cytokine for monitoring the progression of periodontal disease.


Subject(s)
Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gingiva/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Smad2 Protein/metabolism , Transforming Growth Factor beta1/pharmacology , Acetylcysteine/metabolism , Apoptosis , Benzamides/chemistry , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Survival , Dioxoles/chemistry , Humans , Inflammation/metabolism , MAP Kinase Signaling System , Periodontitis/metabolism , Phosphorylation , RNA, Small Interfering/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
17.
Cytotherapy ; 17(7): 860-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25743634

ABSTRACT

BACKGROUND AIMS: The transplantation of mesenchymal stromal cells (MSCs) to damaged tissue has attracted attention in scientific and medical fields as an effective regenerative therapy. Nevertheless, additional studies are required to develop an MSC transplant method for bone regeneration because the use of an artificial scaffold restricts the number of transplanted cells and their function. Furthermore, regulating the degree of cell differentiation in vitro is desirable for a more effective regenerative therapy. To address these unresolved issues, with the use of a self-produced extracellular matrix (ECM), we developed clumps of an MSC/ECM complex (C-MSCs). METHODS: MSCs isolated from rat femur were cultured in growth medium supplemented with 50 µg/mL of ascorbic acid for 7 days. To obtain C-MSCs, confluent cells were scratched with the use of a micropipette tip to roll up the cellular sheet, which consisted of ECM produced by the MSCs. The biological properties of C-MSCs were assessed in vitro and their bone regenerative activity was tested by use of a rat calvarial defect model. RESULTS: Immunofluorescent confocal microscopic analysis revealed that type I collagen formed C-MSCs. Osteopontin messenger RNA expression and amount of calcium content were higher in C-MSCs cultured in osteo-inductive medium than those of untreated C-MSCs. The transplantation of osteogenic-differentiated C-MSCs led to rapid bone regeneration in the rat calvarial defect model. CONCLUSIONS: These results suggest that the use of C-MSCs refined by self-produced ECM, which contain no artificial scaffold and can be processed in vitro, may represent a novel tissue engineering therapy.


Subject(s)
Bone Regeneration/physiology , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cell Transplantation/methods , Parietal Bone/surgery , Tissue Engineering/methods , Animals , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Collagen Type I/metabolism , Culture Media/metabolism , Extracellular Matrix/metabolism , Femur/cytology , Male , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/physiology , Osteogenesis/physiology , Osteopontin/biosynthesis , Osteopontin/genetics , Parietal Bone/injuries , Rats , Rats, Inbred F344
18.
J Immunol ; 190(11): 5788-98, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23610141

ABSTRACT

Homeostatic proliferation of naive T cells in the spleen and cutaneous lymph nodes supplies memory-phenotype T cells. The "systemic" proliferative responses divide distinctly into fast or slow cell division rates. The fast proliferation is critical for generation of effector memory T cells. Because effector memory T cells are abundant in the lamina propria of the intestinal tissue, "gut-specific" homeostatic proliferation of naive T cells may be important for generation of intestinal effector memory T cells. However, such organ-specific homeostatic proliferation of naive T cells has not yet been addressed. In this study, we examined the gut-specific homeostatic proliferation by transferring CFSE-labeled naive CD4(+) T cells into sublethally irradiated mice and separately evaluating donor cell division and differentiation in the intestine, mesenteric lymph nodes (MLNs), and other lymphoid organs. We found that the fast-proliferating cell population in the intestine and MLNs had a gut-tropic α4ß7(+) Th17 phenotype and that their production was dependent on the presence of commensal bacteria and OX40 costimulation. Mesenteric lymphadenectomy significantly reduced the Th17 cell population in the host intestine. Furthermore, FTY720 treatment induced the accumulation of α4ß7(+)IL-17A(+) fast-dividing cells in MLNs and eliminated donor cells in the intestine, suggesting that MLNs rather than intestinal tissues are essential for generating intestinal Th17 cells. These results reveal that MLNs play a central role in inducing gut-tropic Th17 cells and in maintaining CD4(+) T cell homeostasis in the small intestine.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Homeostasis/immunology , Intestines/immunology , Lymph Nodes/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Division , Cell Proliferation , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Intestine, Small/microbiology , Intestines/microbiology , Lymphocyte Activation , Mesentery , Mice , Peyer's Patches/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, OX40/metabolism , Signal Transduction
19.
Cell Immunol ; 290(2): 201-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25064453

ABSTRACT

Gingival epithelium is the primary barrier against microorganism invasion and produces inflammatory cytokines. Amphotericin B, a major antifungal drug, binds to cholesterol in the mammalian cell membrane in addition to fungal ergosterol. Amphotericin B has been shown to regulate inflammatory cytokines in host cells. To investigate the suppressive effect of amphotericin B on the gingival epithelium, we examined the expression of interleukin (IL)-8 and IL-6 and involvement of MAP kinase in human gingival epithelial cells (HGEC) stimulated by Aggregatibacter actinomycetemcomitans. Amphotericin B and the p38 MAP kinase inhibitor down-regulated the A. actinomycetemcomitans-induced increase in the expression of IL-8 and IL-6 at the mRNA. The ERK inhibitor suppressed the A. actinomycetemcomitans-induced IL-8 mRNA expression. Amphotericin B inhibited the A. actinomycetemcomitans-induced phosphorylation of ERK and p38 MAP kinase. Furthermore, amphotericin B inhibited the A. actinomycetemcomitans-induced production of prostaglandin E2. These results suggest that amphotericin B regulate inflammatory responses in HGEC.


Subject(s)
Aggregatibacter actinomycetemcomitans/drug effects , Amphotericin B/pharmacology , Anti-Bacterial Agents/pharmacology , Epithelial Cells/immunology , Gingiva/immunology , Blotting, Western , Cells, Cultured , Down-Regulation , Epithelial Cells/microbiology , Gingiva/microbiology , Humans , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Microbial Sensitivity Tests , Pasteurellaceae Infections/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Blood ; 119(16): 3734-43, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22383801

ABSTRACT

Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.


Subject(s)
Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Membrane Proteins/immunology , T-Lymphocytes, Cytotoxic/immunology , Biomarkers/metabolism , CD56 Antigen/immunology , CD56 Antigen/metabolism , Cell Differentiation/immunology , Cell Line , Cross-Linking Reagents/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunophenotyping , Killer Cells, Natural/cytology , Ligands , Lymphocyte Subsets/metabolism , Membrane Proteins/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , T-Lymphocytes, Cytotoxic/cytology , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL