Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Development ; 149(11)2022 06 15.
Article in English | MEDLINE | ID: mdl-35485417

ABSTRACT

The root cap is a multilayered tissue covering the tip of a plant root that directs root growth through its unique functions, such as gravity sensing and rhizosphere interaction. To maintain the structure and function of the root cap, its constituent cells are constantly turned over through balanced cell division and cell detachment in the inner and outer cell layers, respectively. Upon displacement toward the outermost layer, columella cells at the central root cap domain functionally transition from gravity-sensing cells to secretory cells, but the mechanisms underlying this drastic cell fate transition are largely unknown. Here, using live-cell tracking microscopy, we show that organelles in the outermost cell layer undergo dramatic rearrangements. This rearrangement depends, at least partially, on spatiotemporally regulated activation of autophagy. Notably, this root cap autophagy does not lead to immediate cell death, but is instead necessary for organized separation of living root cap cells, highlighting a previously undescribed role of developmentally regulated autophagy in plants. This article has an associated 'The people behind the papers' interview.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Autophagy , Cell Separation , Humans , Organelles , Plant Root Cap , Plant Roots/metabolism
2.
Development ; 148(4)2021 02 26.
Article in English | MEDLINE | ID: mdl-33637613

ABSTRACT

Organ morphologies are diverse but also conserved under shared developmental constraints among species. Any geometrical similarities in the shape behind diversity and the underlying developmental constraints remain unclear. Plant root tip outlines commonly exhibit a dome shape, which likely performs physiological functions, despite the diversity in size and cellular organization among distinct root classes and/or species. We carried out morphometric analysis of the primary roots of ten angiosperm species and of the lateral roots (LRs) of Arabidopsis, and found that each root outline was isometrically scaled onto a parameter-free catenary curve, a stable structure adopted for arch bridges. Using the physical model for bridges, we analogized that localized and spatially uniform occurrence of oriented cell division and expansion force the LR primordia (LRP) tip to form a catenary curve. These growth rules for the catenary curve were verified by tissue growth simulation of developing LRP development based on time-lapse imaging. Consistently, LRP outlines of mutants compromised in these rules were found to deviate from catenary curves. Our analyses demonstrate that physics-inspired growth rules constrain plant root tips to form isometrically scalable catenary curves.


Subject(s)
Plant Development/physiology , Plant Roots/growth & development , Arabidopsis/growth & development , Cell Division , Meristem/anatomy & histology , Meristem/cytology , Meristem/growth & development , Plant Roots/anatomy & histology , Plant Roots/cytology
3.
New Phytol ; 242(3): 1156-1171, 2024 May.
Article in English | MEDLINE | ID: mdl-38513692

ABSTRACT

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Subject(s)
Catharanthus , Secologanin Tryptamine Alkaloids , Monoterpenes/metabolism , Catharanthus/metabolism , Germination , Seeds/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Cell Differentiation , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
Plant Cell Physiol ; 64(12): 1511-1522, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37130085

ABSTRACT

Plants produce sugars by photosynthesis and use them for growth and development. Sugars are transported from source-to-sink organs via the phloem in the vasculature. It is well known that vascular development is precisely controlled by plant hormones and peptide hormones. However, the role of sugars in the regulation of vascular development is poorly understood. In this study, we examined the effects of sugars on vascular cell differentiation using a vascular cell induction system named 'Vascular Cell Induction Culture System Using Arabidopsis Leaves' (VISUAL). We found that sucrose has the strongest inhibitory effect on xylem differentiation, among several types of sugars. Transcriptome analysis revealed that sucrose suppresses xylem and phloem differentiation in cambial cells. Physiological and genetic analyses suggested that sucrose might function through the BRI1-EMS-SUPPRESSOR1 transcription factor, which is the central regulator of vascular cell differentiation. Conditional overexpression of cytosolic invertase led to a decrease in the number of cambium layers due to an imbalance between cell division and differentiation. Taken together, our results suggest that sucrose potentially acts as a signal that integrates environmental conditions with the developmental program.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cambium/genetics , Cambium/metabolism , Cell Differentiation/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/metabolism , Xylem/metabolism , Sugars/metabolism
5.
Plant Cell Physiol ; 64(10): 1178-1188, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37522618

ABSTRACT

Lateral root (LR) formation is an important developmental event for the establishment of the root system in most vascular plants. In Arabidopsis thaliana, the fewer roots (fwr) mutation in the GNOM gene, encoding a guanine nucleotide exchange factor of ADP ribosylation factor that regulates vesicle trafficking, severely inhibits LR formation. Local accumulation of auxin response for LR initiation is severely affected in fwr. To better understand how local accumulation of auxin response for LR initiation is regulated, we identified a mutation, fewer roots suppressor1 (fsp1), that partially restores LR formation in fwr. The gene responsible for fsp1 was identified as SUPERROOT2 (SUR2), encoding CYP83B1 that positions at the metabolic branch point in the biosynthesis of auxin/indole-3-acetic acid (IAA) and indole glucosinolate. The fsp1 mutation increases both endogenous IAA levels and the number of the sites where auxin response locally accumulates prior to LR formation in fwr. SUR2 is expressed in the pericycle of the differentiation zone and in the apical meristem in roots. Time-lapse imaging of the auxin response revealed that local accumulation of auxin response is more stable in fsp1. These results suggest that SUR2/CYP83B1 affects LR founder cell formation at the xylem pole pericycle cells where auxin accumulates. Analysis of the genetic interaction between SUR2 and GNOM indicates the importance of stabilization of local auxin accumulation sites for LR initiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Plant Roots/metabolism
6.
Plant Cell Physiol ; 64(11): 1311-1322, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37217180

ABSTRACT

Reflection light forms the core of our visual perception of the world. We can obtain vast information by examining reflection light from biological surfaces, including pigment composition and distribution, tissue structure and surface microstructure. However, because of the limitations in our visual system, the complete information in reflection light, which we term 'reflectome', cannot be fully exploited. For example, we may miss reflection light information outside our visible wavelengths. In addition, unlike insects, we have virtually no sensitivity to light polarization. We can detect non-chromatic information lurking in reflection light only with appropriate devices. Although previous studies have designed and developed systems for specialized uses supporting our visual systems, we still do not have a versatile, rapid, convenient and affordable system for analyzing broad aspects of reflection from biological surfaces. To overcome this situation, we developed P-MIRU, a novel multispectral and polarization imaging system for reflecting light from biological surfaces. The hardware and software of P-MIRU are open source and customizable and thus can be applied for virtually any research on biological surfaces. Furthermore, P-MIRU is a user-friendly system for biologists with no specialized programming or engineering knowledge. P-MIRU successfully visualized multispectral reflection in visible/non-visible wavelengths and simultaneously detected various surface phenotypes of spectral polarization. The P-MIRU system extends our visual ability and unveils information on biological surfaces.


Subject(s)
Hyperspectral Imaging , Light , Hyperspectral Imaging/instrumentation
7.
New Phytol ; 233(4): 1780-1796, 2022 02.
Article in English | MEDLINE | ID: mdl-34913488

ABSTRACT

Peptide-receptor signaling is an important system for intercellular communication, regulating many developmental processes. A single process can be controlled by several distinct signaling peptides. However, since peptide-receptor modules are usually studied separately, their mechanistic interactions remain largely unexplored. Two phylogenetically unrelated peptide-receptor modules, GLV6/GLV10-RGI and TOLS2/PIP2-RLK7, independently described as inhibitors of lateral root initiation, show striking similarities between their expression patterns and gain- and loss-of-function phenotypes, suggesting a common function during lateral root spacing and initiation. The GLV6/GLV10-RGI and TOLS2/PIP2-RLK7 modules trigger similar transcriptional changes, likely in part via WRKY transcription factors. Their overlapping set of response genes includes PUCHI and PLT5, both required for the effect of GLV6/10, as well as TOLS2, on lateral root initiation. Furthermore, both modules require the activity of MPK6 and can independently trigger MPK3/MPK6 phosphorylation. The GLV6/10 and TOLS2/PIP2 signaling pathways seem to converge in the activation of MPK3/MPK6, leading to the induction of a similar transcriptional response in the same target cells, thereby regulating lateral root initiation through a (partially) common mechanism. Convergence of signaling pathways downstream of phylogenetically unrelated peptide-receptor modules adds an additional, and hitherto unrecognized, level of complexity to intercellular communication networks in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Peptides/metabolism , Signal Transduction
8.
Plant Cell Environ ; 45(6): 1749-1764, 2022 06.
Article in English | MEDLINE | ID: mdl-35348214

ABSTRACT

Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.


Subject(s)
Populus , Phloem/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism , Populus/metabolism , Trees/metabolism , Xylem/metabolism
9.
Biol Lett ; 18(5): 20210629, 2022 05.
Article in English | MEDLINE | ID: mdl-35506238

ABSTRACT

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Camphanes , Humans , Indoleacetic Acids/pharmacology , Meristem/physiology , Methanol , Plant Roots/physiology
10.
J Plant Res ; 135(3): 473-483, 2022 May.
Article in English | MEDLINE | ID: mdl-35243587

ABSTRACT

Bioactive specialized (secondary) metabolites are indispensable for plant development or adjustment to their surrounding environment. In many plants, these specialized metabolites are accumulated in specifically differentiated cells. Catharanthus roseus is a well-known medicinal plant known for producing many kinds of monoterpenoid indole alkaloids (MIAs). C. roseus has two types of specifically differentiated cells accumulating MIAs, so-called idioblast cells and laticifer cells. In this study, we compared each of the cells as they changed during seedling growth, and found that the fluorescent metabolites accumulated in these cells were differentially regulated. Analysis of fluorescent compounds revealed that the fluorescence observed in these cells was emitted from the compound serpentine. Further, we found that the serpentine content of leaves increased as leaves grew. Our findings suggest that idioblast cells and laticifer cells have different biological roles in MIA biosynthesis and its regulation.


Subject(s)
Catharanthus , Catharanthus/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Seedlings/metabolism
11.
Proc Natl Acad Sci U S A ; 116(28): 14325-14330, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235573

ABSTRACT

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In Arabidopsis, the AP2 family transcription factor PUCHI controls cell proliferation in lateral root primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic dataset of lateral root formation. We report that multiple genes coding for very long chain fatty acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar lateral root developmental defects as puchi-1 Moreover, puchi-1 roots display the same disorganized callus formation phenotype as VLCFA biosynthesis-deficient mutants when grown on auxin-rich callus-inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced VLCFA content compared with WT. We conclude that PUCHI-regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during lateral root and callus formation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Bony Callus/growth & development , Plant Roots/growth & development , Transcription Factors/genetics , Arabidopsis/growth & development , Bony Callus/metabolism , Cell Proliferation/genetics , Fatty Acids/biosynthesis , Fatty Acids/genetics , Indoleacetic Acids/metabolism , Plant Development/genetics , Plant Roots/genetics
12.
Plant J ; 100(3): 536-548, 2019 11.
Article in English | MEDLINE | ID: mdl-31306517

ABSTRACT

In auxin-stimulated roots, production of reactive oxygen species (ROS) via the hormone-induced activation of respiratory burst oxidase homologous NADPH oxidases facilitates lateral root (LR) formation. In this study, in order to verify that ROS can modulate auxin signaling, we examined the involvement of the lipid peroxide-derived agents known as reactive carbonyl species (RCS) in LR formation. When auxin was added to Arabidopsis thaliana roots, the levels of RCS, for example acrolein, 4-hydroxynonenal and crotonaldehyde, were increased prior to LR formation. Addition of the carbonyl scavenger carnosine suppressed auxin-induced LR formation. Addition of RCS to the roots induced the expression of the auxin-responsive DR5 promoter and the TIR1, IAA14, ARF7, LBD16 and PUCHI genes and facilitated LR formation without increasing the endogenous auxin level. DR5 and LBD16 were activated in the LR primordia. The auxin signaling-deficient mutants arf7 arf19 and slr-1 did not respond - and tir1 afb2 appeared to show a poor response - to RCS. When given to the roots RCS promoted the disappearance of the AXR3NT-GUS fusion protein, i.e. the degradation of the auxin/indole-3-acetic acid protein, as did auxin. These results indicate that the auxin-induced production of ROS and their downstream products RCS modulate the auxin signaling pathway in a feed-forward manner. RCS are key agents that connect the ROS signaling and the auxin signaling pathways.


Subject(s)
Arabidopsis/physiology , Free Radicals/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genes, Reporter , Lipid Peroxides/metabolism , Oxylipins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
13.
New Phytol ; 227(1): 200-215, 2020 07.
Article in English | MEDLINE | ID: mdl-32129890

ABSTRACT

Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Roots/metabolism
14.
Plant Physiol ; 180(2): 896-909, 2019 06.
Article in English | MEDLINE | ID: mdl-30894418

ABSTRACT

Pyruvate dehydrogenase is the first enzyme (E1) of the PDH complex (PDC). This multienzyme complex contains E1, E2, and E3 components and controls the entry of carbon into the mitochondrial tricarboxylic acid cycle to enable cellular energy production. The E1 component of the PDC is composed of an E1α catalytic subunit and an E1ß regulatory subunit. In Arabidopsis (Arabidopsis thaliana), there are two mitochondrial E1α homologs encoded by IAA-CONJUGATE-RESISTANT 4 (IAR4) and IAR4-LIKE (IAR4L), and one mitochondrial E1ß homolog. Although IAR4 was reported to be involved in auxin conjugate sensitivity and auxin homeostasis in root development, its precise role remains unknown. Here, we provide experimental evidence that mitochondrial PDC E1 contributes to polar auxin transport during organ development. We performed genetic screens for factors involved in cotyledon development and identified an uncharacterized mutant, macchi-bou 1 (mab1). MAB1 encodes a mitochondrial PDC E1ß subunit that can form both a homodimer and a heterodimer with IAR4. The mab1 mutation impaired MAB1 homodimerization, reduced the abundance of IAR4 and IAR4L, weakened PDC enzymatic activity, and diminished mitochondrial respiration. A metabolomics analysis showed significant changes in metabolites including amino acids in mab1 and, in particular, identified an accumulation of Ala. These results suggest that MAB1 is a component of the Arabidopsis mitochondrial PDC E1. Furthermore, in mab1 mutants and seedlings where the TCA cycle was pharmacologically blocked, we found reduced abundance of the PIN-FORMED (PIN) auxin efflux carriers, possibly due to impaired PIN recycling and enhanced PIN degradation in vacuoles. Therefore, we suggest that mab1 induces defective polar auxin transport via metabolic abnormalities.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Indoleacetic Acids/pharmacology , Mitochondria/enzymology , Organogenesis/drug effects , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Arabidopsis/drug effects , Biological Transport/drug effects , Cell Respiration/drug effects , Meristem/drug effects , Meristem/metabolism , Metabolomics , Mutation/genetics , Protein Subunits/metabolism , Proteolysis/drug effects , Seedlings/drug effects
15.
Development ; 143(18): 3363-71, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27510971

ABSTRACT

Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Meristem/genetics , Meristem/metabolism , Plant Roots/genetics
16.
Development ; 143(18): 3340-9, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27578783

ABSTRACT

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Membrane Transport Proteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics
17.
New Phytol ; 224(2): 749-760, 2019 10.
Article in English | MEDLINE | ID: mdl-31310684

ABSTRACT

Lateral root (LR) formation in Arabidopsis thaliana is initiated by asymmetric division of founder cells, followed by coordinated cell proliferation and differentiation for patterning new primordia. The sequential developmental processes of LR formation are triggered by a localized auxin response. LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), an auxin-inducible transcription factor, is one of the key regulators linking auxin response in LR founder cells to LR initiation. We identified key genes for LR formation that are activated by LBD16 in an auxin-dependent manner. LBD16 targets identified include the transcription factor gene PUCHI, which is required for LR primordium patterning. We demonstrate that LBD16 activity is required for the auxin-inducible expression of PUCHI. We show that PUCHI expression is initiated after the first round of asymmetric cell division of LR founder cells and that premature induction of PUCHI during the preinitiation phase disrupts LR primordium formation. Our results indicate that LR initiation requires the sequential induction of transcription factors LBD16 and PUCHI.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental/physiology , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Transcription Factors/genetics
18.
New Phytol ; 224(2): 848-859, 2019 10.
Article in English | MEDLINE | ID: mdl-31436868

ABSTRACT

Catharanthus roseus is a medicinal plant well known for producing bioactive compounds such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). Although the leaves of this plant are the main source of these antitumour drugs, much remains unknown on how TIAs are biosynthesised from a central precursor, strictosidine, to various TIAs in planta. Here, we have succeeded in showing, for the first time in leaf tissue of C. roseus, cell-specific TIAs localisation and accumulation with 10 µm spatial resolution Imaging mass spectrometry (Imaging MS) and live single-cell mass spectrometry (single-cell MS). These metabolomic studies revealed that most TIA precursors (iridoids) are localised in the epidermal cells, but major TIAs including serpentine and vindoline are localised instead in idioblast cells. Interestingly, the central TIA intermediate strictosidine also accumulates in both epidermal and idioblast cells of C. roseus. Moreover, we also found that vindoline accumulation increases in laticifer cells as the leaf expands. These discoveries highlight the complexity of intercellular localisation in plant specialised metabolism.


Subject(s)
Catharanthus/cytology , Catharanthus/metabolism , Metabolomics , Plant Leaves/cytology , Secologanin Tryptamine Alkaloids/metabolism , Cell Culture Techniques , Principal Component Analysis
19.
Plant Physiol ; 177(4): 1704-1716, 2018 08.
Article in English | MEDLINE | ID: mdl-29934297

ABSTRACT

Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Roots/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Indenes/pharmacology , Oxylipins/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 113(23): 6562-7, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27217573

ABSTRACT

Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.


Subject(s)
Arabidopsis Proteins/genetics , Indoleacetic Acids/pharmacology , Repressor Proteins/genetics , Transcription Factors/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL