ABSTRACT
Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 µM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 µM, respectively. The corresponding intracellular concentrations following the treatment at 5 µM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.
ABSTRACT
DEC-205 (CD205), a member of the macrophage mannose receptor protein family, is the prototypic endocytic receptor of dendritic cells, whose ligands include phosphorothioated cytosine-guanosine oligonucleotides, a motif often seen in bacterial or viral DNA. However, despite growing biological and clinical significance, little is known about the structural arrangement of this receptor or any of its family members. Here, we describe the 3.2 Å cryo-EM structure of human DEC-205, thereby illuminating the structure of the mannose receptor protein family. The DEC-205 monomer forms a compact structure comprising two intercalated rings of C-type lectin-like domains, where the N-terminal cysteine-rich and fibronectin domains reside at the central intersection. We establish a pH-dependent oligomerization pathway forming tetrameric DEC-205 using solution-based techniques and ultimately solved the 4.9 Å cryo-EM structure of the DEC-205 tetramer to identify the unfurling of the second lectin ring which enables tetramer formation. Furthermore, we suggest the relevance of this oligomerization pathway within a cellular setting, whereby cytosine-guanosine binding appeared to disrupt this cell-surface oligomer. Accordingly, we provide insight into the structure and oligomeric assembly of the DEC-205 receptor.
Subject(s)
Antigens, CD/chemistry , Antigens, CD/metabolism , Cryoelectron Microscopy/methods , Fibronectins/metabolism , Lectins, C-Type/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Humans , Lectins, C-Type/chemistry , Ligands , Protein ConformationABSTRACT
Staphylococcus aureus is a notorious human bacterial pathogen with considerable capacity to develop antibiotic resistance. We have observed that human infections caused by highly drug-resistant S. aureus are more prolonged, complicated, and difficult to eradicate. Here we describe a metabolic adaptation strategy used by clinical S. aureus strains that leads to resistance to the last-line antibiotic, daptomycin, and simultaneously affects host innate immunity. This response was characterized by a change in anionic membrane phospholipid composition induced by point mutations in the phospholipid biosynthesis gene, cls2, encoding cardiolipin synthase. Single cls2 point mutations were sufficient for daptomycin resistance, antibiotic treatment failure, and persistent infection. These phenotypes were mediated by enhanced cardiolipin biosynthesis, leading to increased bacterial membrane cardiolipin and reduced phosphatidylglycerol. The changes in membrane phospholipid profile led to modifications in membrane structure that impaired daptomycin penetration and membrane disruption. The cls2 point mutations also allowed S. aureus to evade neutrophil chemotaxis, mediated by the reduction in bacterial membrane phosphatidylglycerol, a previously undescribed bacterial-driven chemoattractant. Together, these data illustrate a metabolic strategy used by S. aureus to circumvent antibiotic and immune attack and provide crucial insights into membrane-based therapeutic targeting of this troublesome pathogen.
Subject(s)
Drug Resistance, Bacterial/genetics , Membrane Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial/immunology , Gene Expression Regulation, Bacterial/drug effects , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/immunology , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Transferases (Other Substituted Phosphate Groups)/metabolismABSTRACT
Background: Current inhaled polymyxin therapy is empirical and often large doses are administered, which can lead to pulmonary adverse effects. There is a dearth of information on the mechanisms of polymyxin-induced lung toxicity and their intracellular localization in lung epithelial cells. Objectives: To investigate the intracellular localization of polymyxins in human lung epithelial A549 cells. Methods: A549 cells were treated with polymyxin B and intracellular organelles (early and late endosomes, endoplasmic reticulum, mitochondria, lysosomes and autophagosomes), ubiquitin protein and polymyxin B were visualized using immunostaining and confocal microscopy. Fluorescence intensities of the organelles and polymyxin B were quantified and correlated for co-localization using ImageJ and Imaris platforms. Results: Polymyxin B co-localized with early endosomes, lysosomes and ubiquitin at 24 h. Significantly increased lysosomal activity and the autophagic protein LC3A were observed after 0.5 and 1.0 mM polymyxin B treatment at 24 h. Polymyxin B also significantly co-localized with mitochondria (Pearson's R = 0.45) and led to the alteration of mitochondrial morphology from filamentous to fragmented form (n = 3, P < 0.001). These results are in line with the polymyxin-induced activation of the mitochondrial apoptotic pathway observed in A549 cells. Conclusions: Accumulation of polymyxins on mitochondria probably caused mitochondrial toxicity, resulting in increased oxidative stress and cell death. The formation of autophagosomes and lysosomes was likely a cellular response to the polymyxin-induced stress and played a defensive role by disassembling dysfunctional organelles and proteins. Our study provides new mechanistic information on polymyxin-induced lung toxicity, which is vital for optimizing inhaled polymyxins in the clinic.
Subject(s)
Alveolar Epithelial Cells/chemistry , Anti-Bacterial Agents/analysis , Organelles/chemistry , Polymyxins/analysis , A549 Cells , Humans , Microscopy, ConfocalABSTRACT
Thermal conductivity enhancement in a multiphase fluid such as water-in-oil emulsion can substantially improve efficacies in a broad range of applications. However, nanoparticle additives that are often used to do so can catastrophically destabilize a delicate emulsion system, in our case, a high internal phase emulsion (HIPE), whereas large concentration of additives can adversely impact practical processing aspects. Therefore, means to enhance the thermal conductivity of emulsions with a minute concentration of additives (<1 wt %) is a major scientific challenge. We report the enhancement in thermal conductivity of HIPE, by consigning either lipophilic GO (fGO) in the oil phase or hydrophilic GO in the water phase in combination with a well-known emulsifier. The rheological properties of fGO-HIPE showed non-Newtonian viscoelastic behavior similar to that of the original emulsion but with lower elastic modulus and viscosity, indicating that GO incorporation has enhanced processability. The thermal conductivity enhancements can be predicted by thermal circuit models, and the HIPEs with fGO and GO demonstrated 21 and 13% enhancements over the parent emulsion with a minor 0.1 w/w addition, respectively. A possible role of ordered colloidal structures of GO and fGO underlining this prepercolation behavior is inferred from comprehensive imaging and thermal studies.
ABSTRACT
The human immunodeficiency virus (HIV)-1 transactivator protein Tat is known to play a key role in HIV infection, integrally related to its role in the host cell nucleus/nucleolus. Here we show for the first time that Tat localisation can be modulated by specific methylation, whereby overexpression of active but not catalytically inactive PRMT6 methyltransferase specifically leads to exclusion of Tat from the nucleolus. An R52/53A mutated Tat derivative does not show this redistribution, implying that R52/53, within Tat's nuclear/nucleolar localisation signal, are the targets of PRMT6 activity. Analysis using fluorescence recovery after photobleaching indicate that Tat nucleolar accumulation is largely through binding to nucleolar components, with methylation of Tat by PRMT6 preventing this. To our knowledge, this is the first report of specific protein methylation inhibiting nucleolar retention.
Subject(s)
Cell Nucleolus/metabolism , HIV-1/metabolism , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Arginine/genetics , Arginine/metabolism , COS Cells , Chlorocebus aethiops , Electrophoresis, Polyacrylamide Gel , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HIV-1/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Methylation , Microscopy, Confocal , Mutation , Nuclear Localization Signals/genetics , Nuclear Proteins/genetics , Protein Binding , Protein-Arginine N-Methyltransferases/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Red Fluorescent ProteinABSTRACT
The human rhinovirus (HRV) 3C and 2A proteases (3Cpro and 2Apro, respectively) are critical in HRV infection, as they are required for viral polyprotein processing as well as proteolysing key host factors to facilitate virus replication. Early in infection, 3Cpro is present as its precursor 3CD, which, although the mechanism of subcellular targeting is unknown, is found in the nucleus as well as the cytoplasm. In this study, we use transfected and infected cell systems to show that 2Apro activity is required for 3CD nuclear localization. Using green fluorescent protein (GFP)-tagged forms of 3Cpro, 3D, and mutant derivatives thereof, we show that 3Cpro is located in the cytoplasm and the nucleus, whereas 3CD and 3D are localized predominantly in the cytoplasm, implying that 3D lacks nuclear targeting ability and that 3Cpro activity within 3CD is not sufficient to allow the larger protein into the nucleus. Importantly, by coexpressing mCherry-2Apro fusion proteins, we demonstrate formally that 2Apro activity is required to allow HRV 3CD access to the nucleus. In contrast, mCherry-3Cpro is insufficient to allow 3CD access to the nucleus. Finally, we confirm the relevance of these results to HRV infection by demonstrating that nuclear localization of 3CD correlates with 2Apro activity and not 3Cpro activity, which is observed only later in infection. The results thus define the temporal activities of 2Apro and 3CD/3Cpro activities in HRV serotype16 infection. IMPORTANCE: The human rhinovirus genome encodes two proteases, 2A and 3C, as well as a precursor protease, 3CD. These proteases are essential for efficient virus replication. The 3CD protein is found in the nucleus early during infection, though the mechanism of subcellular localization is unknown. Here we show that 2A protease is required for this localization, the 3C protease activity of 3CD is not sufficient to allow 3CD entry into the nucleus, and 3D lacks nuclear targeting ability. This study demonstrates that both 2A and 3C proteases are required for the correct localization of proteins during infection and defines the temporal regulation of 2A and 3CD/3C protease activities during HRV16 infection.
Subject(s)
Cysteine Endopeptidases/genetics , Cytoplasm/virology , Gene Expression Regulation, Viral , Rhinovirus/genetics , Viral Proteins/genetics , 3C Viral Proteases , Cell Nucleus/virology , Cysteine Endopeptidases/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Transport , Proteolysis , Rhinovirus/classification , Rhinovirus/metabolism , Serogroup , Viral Proteins/metabolism , Virus Replication , Red Fluorescent ProteinABSTRACT
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Subject(s)
Aminoacyltransferases , Vaccines , Bacterial Proteins/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolismABSTRACT
Exploitation of the biotin-streptavidin interaction for advanced protein engineering is used in many bio-nanotechnology applications. As such, researchers have used diverse techniques involving chemical and enzyme reactions to conjugate biotin to biomolecules of interest for subsequent docking onto streptavidin-associated molecules. Unfortunately, the biotin-streptavidin interaction is susceptible to steric hindrance and conformational malformation, leading to random orientations that ultimately impair the function of the displayed biomolecule. To minimize steric conflicts, we employ sortase A transpeptidation to produce quantitative, seamless, and unbranched nanobody-biotin conjugates for efficient display on streptavidin-associated nanoparticles. We further characterize the protein-nanoparticle complex and demonstrate its usefulness in optical microscopy and multivalent severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen interaction. The approach reported here provides a template for making novel multivalent and multifunctional protein complexes for avidity-inspired technologies.
ABSTRACT
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.
Subject(s)
Active Transport, Cell Nucleus , Viral Proteins/metabolism , Virus Diseases/pathology , Animals , Humans , Virus Diseases/metabolismABSTRACT
This study describes for the first time the ability of the novel BRCA1-binding protein 2 (BRAP2) to inhibit the nuclear import of specific viral proteins dependent on phosphorylation. Ectopic expression of BRAP2 in transfected African green monkey kidney COS-7 cells was found to significantly reduce nuclear localization signal (NLS)-dependent nuclear accumulation of either simian virus SV40 large-tumor antigen (T-ag) or human cytomegalovirus DNA polymerase processivity factor ppUL44; this was also observed in HL-60 human promyelocytic leukemia cells on induction of BRAP2 expression by vitamin D3 treatment. BRAP2 inhibition of nuclear accumulation was dependent on phosphorylation sites flanking the respective NLSs, where substitution of the cyclin-dependent kinase site T124 of T-ag with Ala or Asp prevented or enhanced BRAP2 inhibition of nuclear import, respectively. Substitution of T427 within the NLS of ppUL44 gave similar results, whereas no effect of BRAP2 was observed on nuclear targeting of other viral proteins, such as herpes simplex virus-1 pUL30, which lacks a phosphorylation site near its NLS, and the human immunodeficiency virus-1 Tat protein. Pulldowns/AlphaScreen assays indicated direct, high-affinity binding of BRAP2(442-592) to T-ag(111-135), strictly dependent on negative charge at T124 and the NLS. All results are consistent with BRAP2 being a novel, phosphorylation-regulated negative regulator of nuclear import, with potential as an antiviral agent.
Subject(s)
Cell Nucleus/metabolism , Nuclear Localization Signals/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Antigens, Polyomavirus Transforming/metabolism , COS Cells , Chlorocebus aethiops , Cytoplasm/metabolism , HL-60 Cells , Humans , Phosphorylation , Ubiquitin-Protein Ligases/antagonists & inhibitorsABSTRACT
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
ABSTRACT
The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct ß-peptide monomers, a lipidated tri-ß-peptide (ß3-peptide) and a novel ß3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.
ABSTRACT
The pathogen Staphylococcus aureus can readily develop antibiotic resistance and evade the human immune system, which is associated with reduced levels of neutrophil recruitment. Here, we present a class of antibacterial peptides with potential to act both as antibiotics and as neutrophil chemoattractants. The compounds, which we term 'antibiotic-chemoattractants', consist of a formylated peptide (known to act as chemoattractant for neutrophil recruitment) that is covalently linked to the antibiotic vancomycin (known to bind to the bacterial cell wall). We use a combination of in vitro assays, cellular assays, infection-on-a-chip and in vivo mouse models to show that the compounds improve the recruitment, engulfment and killing of S. aureus by neutrophils. Furthermore, optimizing the formyl peptide sequence can enhance neutrophil activity through differential activation of formyl peptide receptors. Thus, we propose antibiotic-chemoattractants as an alternate approach for antibiotic development.
Subject(s)
Anti-Bacterial Agents/pharmacology , Chemotactic Factors/pharmacology , Neutrophils/drug effects , Staphylococcus aureus/drug effects , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacterial Load/drug effects , Chemotactic Factors/chemistry , Chemotactic Factors/therapeutic use , Drug Resistance, Bacterial/drug effects , Immunotherapy , Mice , Neutrophils/immunology , Neutrophils/metabolism , Peptides/chemistry , Peptides/pharmacology , Phagocytosis/drug effects , Receptors, Formyl Peptide/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Vancomycin/chemistry , Vancomycin/pharmacologyABSTRACT
T cell receptor (TCR) recognition of peptide-major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using "reversed-docking" TCRß-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db-NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR-pMHCI binding or clustering characteristics. Canonical TCR-pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR-pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR-pMHC docking topology is mandated by T cell signaling constraints.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigen H-2D/metabolism , Nucleocapsid Proteins/metabolism , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Animals , CD3 Complex/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epitopes, T-Lymphocyte , Female , Histocompatibility Antigen H-2D/chemistry , Histocompatibility Antigen H-2D/immunology , Influenza A virus , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Major Histocompatibility Complex , Mice , Mice, Inbred C57BL , Models, Molecular , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/immunology , Signal TransductionABSTRACT
Arginine methylation of human immunodeficiency virus type 1 (HIV-1) Tat protein downregulates its key function in viral-gene transactivation. The fate of methylated Tat is unknown, so it is unclear whether methylated Tat is degraded or persists in the cell for additional functions. Here we show that the arginine methyltransferase PRMT6 increases Tat protein half-life by 4.7-fold. Tat stabilization depends on the catalytic activity of PRMT6 and requires arginine methylation within the Tat basic domain. In contrast, HIV-1 Rev, which is also methylated by PRMT6, is completely refractory to the stabilizing effect. Proteasome inhibition and silencing experiments demonstrated that Tat can be degraded by a REGgamma-independent proteasome, against which PRMT6 appears to act to increase Tat half-life. Our data reveal a proteasome-dependent Tat degradation pathway that is inhibited by arginine methylation. The stabilizing action of PRMT6 could allow Tat to persist within the cell and the extracellular environment and thereby enable functions implicated in AIDS-related cancer, neurodegeneration, and T-cell death.
Subject(s)
HIV-1/physiology , tat Gene Products, Human Immunodeficiency Virus/physiology , Arginine/metabolism , Blotting, Western , Cell Line , HeLa Cells , Humans , Methylation , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/physiologyABSTRACT
The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.
Subject(s)
Antigens/immunology , Dendritic Cells/physiology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , CHO Cells , Cricetinae , Cricetulus , Gene Expression Regulation/physiology , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, Immunologic/genetics , Ubiquitin-Protein Ligases/geneticsABSTRACT
Interferon (IFN) gamma's ability to localise in the nucleus and function in gene activation has been known for some time, although the role of the conventional nuclear transporting importin molecules is unclear. Here, we demonstrate for the first time the direct recognition of IFNgamma and an IFNgamma mimetic peptide by IMPalpha and the IMPalpha/beta heterodimer, where the IFNgamma mimetic shows higher affinity. Significantly, this correlates well both with in vivo ability to target green fluorescent protein to the nucleus in transfected cells as determined by quantitative confocal laser scanning microscopy, as well as GAS promoter activity of a luciferase reporter. This has important implications for IFNgamma's anti-viral action, and the potential use of the IFNgamma mimetic in antiviral therapies.
Subject(s)
Cell Nucleus/metabolism , Interferon-gamma/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism , Amino Acid Sequence , Animals , Biomimetic Materials/metabolism , COS Cells , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interferon-gamma/genetics , Molecular Sequence Data , Nuclear Localization Signals/metabolism , Peptides , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcriptional ActivationABSTRACT
ß3-peptides uniquely form shear thinning hydrogels which are proteolytically stable and biocompatible. Herein we describe the synthesis, material and optical characterization of a new class of fluorescently labeled hydrogelators based on a helical N-acetylated ß3-peptide backbone. The resulting hydrogels were analyzed using fluorescence microscopy to confirm successful incorporation of the fluorophore within the fiber matrix without compromising the ß3-peptide self-assembly. Serial, noninvasive conscious animal imaging was used to monitor the injected hydrogel, delivered via subcutaneous injection, while tracking their degradation patterns in real-time. The hydrogels demonstrated persistent, high-intensity fluorescence when monitored over a 14-day period.
ABSTRACT
The ß-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of â¼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly.