Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell ; 140(5): 631-42, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211133

ABSTRACT

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Subject(s)
Biological Evolution , Naegleria/genetics , Eukaryota/classification , Eukaryota/genetics , Flagella/metabolism , Molecular Sequence Data , Naegleria/metabolism , Phylogeny , Protozoan Proteins/analysis , Protozoan Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 111(1): 137-42, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24351929

ABSTRACT

Thiaminases, enzymes that cleave vitamin B1, are sporadically distributed among prokaryotes and eukaryotes. Thiaminase I enzymes catalyze the elimination of the thiazole ring moiety from thiamin through substitution of the methylene group with a nitrogenous base or sulfhydryl compound. In eukaryotic organisms, these enzymes are reported to have much higher molecular weights than their bacterial counterparts. A thiaminase I of the single-celled amoeboflagellate Naegleria gruberi is the only eukaryotic thiaminase I to have been cloned, sequenced, and expressed. Here, we present the crystal structure of N. gruberi thiaminase I to a resolution of 2.8 Å, solved by isomorphous replacement and pseudo-two-wavelength multiwavelength anomalous diffraction and refined to an R factor of 0.231 (Rfree, 0.265). This structure was used to solve the structure of the enzyme in complex with 3-deazathiamin, a noncleavable thiamin analog and enzyme inhibitor (2.7 Å; R, 0.233; Rfree, 0.267). These structures define the mode of thiamin binding to this class of thiaminases and indicate the involvement of Asp272 as the catalytic base. This enzyme is able to use thiamin as a substrate and is active with amines such as aniline and veratrylamine as well as sulfhydryl compounds such as l-cysteine and ß-mercaptoethanol as cosubstrates. Despite significant differences in polypeptide sequence and length, we have shown that the N. gruberi thiaminase I is homologous in structure and activity to a previously characterized bacterial thiaminase I.


Subject(s)
Hydrolases/chemistry , Naegleria/enzymology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/metabolism , Mercaptoethanol/chemistry , Peptides/chemistry , Protein Binding , Thiamine/chemistry
3.
Genome ; 59(11): 1049-1061, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27809602

ABSTRACT

Here, we present a new approach for increasing the rate and lowering the cost of identifying, cataloging, and monitoring global biodiversity. These advances, which we call Closed-Tube Barcoding, are one application of a suite of proven PCR-based technologies invented in our laboratory. Closed-Tube Barcoding builds on and aims to enhance the profoundly important efforts of the International Barcode of Life initiative. Closed-Tube Barcoding promises to be particularly useful when large numbers of small or rare specimens need to be screened and characterized at an affordable price. This approach is also well suited for automation and for use in portable devices.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic/methods , Animals , Bacterial Proteins/genetics , Cluster Analysis , Computational Biology/methods , DNA-Directed RNA Polymerases/genetics , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction/methods , Workflow
4.
Front Cell Dev Biol ; 10: 867374, 2022.
Article in English | MEDLINE | ID: mdl-35547824

ABSTRACT

The multi-tubulin hypothesis proposed in 1976 was motivated by finding that the tubulin to build the flagellar apparatus was synthesized de novo during the optional differentiation of Naegleria from walking amoebae to swimming flagellates. In the next decade, with the tools of cloning and sequencing, we were able to establish that the rate of flagellar tubulin synthesis in Naegleria is determined by the abundance of flagellar α- and ß-tubulin mRNAs. These experiments also established that the tubulins for Naegleria mitosis were encoded by separate, divergent genes, candidates for which remain incompletely characterized. Meanwhile an unanticipated abundance of tubulin isotypes has been discovered by other researchers. Together with the surprises of genome complexity, these tubulin isotypes require us to rethink how we might utilize the opportunities and challenges offered by the evolutionary diversity of eukaryotes.

5.
Cilia ; 5: 10, 2016.
Article in English | MEDLINE | ID: mdl-27047659

ABSTRACT

The amoeboflagellate Naegleria was one of the first organisms in which de novo basal body/centriole assembly was documented. When in its flagellate form, this single-celled protist has two flagella that are templated by two basal bodies. Each of these basal bodies is structurally well conserved, with triplet microtubules and well-defined proximal cartwheel structures, similar to most other eukaryotic centrioles. The basal bodies are anchored to the nucleus by a single, long striated rootlet. The Naegleria genome encodes many conserved basal body genes whose expression is induced prior to basal body assembly. Because of the rapid and synchronous differentiation from centriole-less amoebae to temporary flagellates with basal bodies, Naegleria offers one of the most promising systems to study de novo basal body assembly, as well as the mechanisms regulating the number of centrioles assembled per cell.

6.
Cytoskeleton (Hoboken) ; 73(3): 109-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26873879

ABSTRACT

Centrioles are eukaryotic organelles whose number and position are critical for cilia formation and mitosis. Many cell types assemble new centrioles next to existing ones ("templated" or mentored assembly). Under certain conditions, centrioles also form without pre-existing centrioles (de novo). The synchronous differentiation of Naegleria amoebae to flagellates represents a unique opportunity to study centriole assembly, as nearly 100% of the population transitions from having no centrioles to having two within minutes. Here, we find that Naegleria forms its first centriole de novo, immediately followed by mentored assembly of the second. We also find both de novo and mentored assembly distributed among all major eukaryote lineages. We therefore propose that both modes are ancestral and have been conserved because they serve complementary roles, with de novo assembly as the default when no pre-existing centriole is available, and mentored assembly allowing precise regulation of number, timing, and location of centriole assembly.


Subject(s)
Centrioles/metabolism , Evolution, Molecular , Models, Biological , Naegleria/metabolism , Naegleria/cytology
7.
Res Microbiol ; 162(6): 607-18, 2011.
Article in English | MEDLINE | ID: mdl-21392573

ABSTRACT

Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.


Subject(s)
Genome, Protozoan , Naegleria/genetics , Flagella/genetics , Flagella/metabolism , Interspersed Repetitive Sequences , Mitochondria/genetics , Plasmids/genetics , RNA Processing, Post-Transcriptional , Sequence Analysis, DNA , Signal Transduction
8.
Protist ; 161(5): 642-71, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21036663

ABSTRACT

Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.


Subject(s)
Energy Metabolism , Eukaryota/metabolism , Anaerobiosis , Eukaryota/classification , Evolution, Molecular , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL