Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Transl Med ; 21(1): 363, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277823

ABSTRACT

BACKGROUND: Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS: Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS: Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION: Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Mutation , Phenotype , RNA
2.
Acta Neuropathol Commun ; 11(1): 124, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37501103

ABSTRACT

To date, several studies on genomic events underlying medulloblastoma (MB) biology have expanded our understanding of this tumour entity and led to its division into four groups-WNT, SHH, group 3 (G3) and group 4 (G4). However, there is little information about the relevance of pathogenic mitochondrial DNA (mtDNA) mutations and their consequences across these. In this report, we describe the case of a female patient with MB and a mitochondriopathy, followed by a study of mtDNA variants in MB groups. After being diagnosed with G4 MB, the index patient was treated in line with the HIT 2000 protocol with no indications of relapse after five years. Long-term side effects of treatment were complemented by additional neurological symptoms and elevated lactate levels ten years later, resulting in suspected mitochondrial disease. This was confirmed by identifying a mutation in the MT-TS1 gene which appeared homoplasmic in patient tissue and heteroplasmic in the patient's mother. Motivated by this case, we explored mtDNA mutations across 444 patients from ICGC and HIT cohorts. While there was no statistically significant enrichment of mutations in one MB group, both cohorts encompassed a small group of patients harbouring potentially deleterious mtDNA variants. The case presented here highlights the possible similarities between sequelae caused by MB treatment and neurological symptoms of mitochondrial dysfunction, which may apply to patients across all MB groups. In the context of the current advances in characterising and interpreting mtDNA aberrations, recognising affected patients could enhance our future knowledge regarding the mutations' impact on carcinogenesis and cancer treatment.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Mitochondrial Diseases , Humans , Female , Medulloblastoma/genetics , Mutation/genetics , DNA, Mitochondrial/genetics , Cerebellar Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL