Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39088738

ABSTRACT

Cytolytic ETosis is a type of programmed cell death distinct from apoptosis and necrosis and plays a major role in the innate immune system and disease progression. Through the process of ETosis, cells release their chromatin with diverse antimicrobial proteins into the extracellular milieu, forming extracellular traps (ETs). Although ETosis has been reported in several leukocyte types, few studies have compared ETosis and the component proteins of ETs in leukocytes. The aim of this study was to better understand the characteristics of eosinophil ETosis (EETosis) compared with other leukocytes. We isolated human blood eosinophils, neutrophils, basophils, monocytes, and lymphocytes and stimulated them with known ETosis inducers, a protein kinase C activator PMA, or a calcium ionophore A23187. Both stimuli induced eosinophil cell death and ET release after 180 minutes of stimulation in a NADPH-oxidase-dependent manner. PMA also induced NADPH-oxidase-dependent ETosis in neutrophils, whereas little or no significant ETosis was observed in basophils, monocytes, or lymphocytes at 180 minutes. Mass spectrometry-based proteomic analysis of eosinophil- and neutrophil-derived ETs identified 997 and 1415 proteins, respectively. Among the physiological stimuli tested, immobilized IgA and IgG induced EETosis. C-C motif chemokine ligand 11 (CCL11) and interleukin 5 (IL-5) were weak inducers of EETosis, but co-stimulation significantly induced rapid EETosis. Under high serum or albumin conditions, co-stimulation with CCL11 and IL-5 paradoxically prolonged cell survival by preventing spontaneous apoptosis. This study provides an in-depth characterization of EETosis and highlights the precise regulation of eosinophil survival and cell death pathways.

2.
Allergol Int ; 70(1): 19-29, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33189567

ABSTRACT

Eosinophils are short-lived and comprise only a small population of circulating leukocytes; however, they play surprisingly multifunctional roles in homeostasis and various diseases including allergy and infection. Recent research has shed light on active cytolytic eosinophil cell death that releases eosinophil extracellular traps (EETs) and total cellular contents, namely eosinophil extracellular trap cell death (EETosis). The pathological contribution of EETosis was made more cogent by recent findings that a classical pathological finding of eosinophilic inflammation, that of Charcot-Leyden crystals, is closely associated with EETosis. Currently no gold standard methods to identify EETosis exist, but "an active eosinophil lysis that releases cell-free granules and net-like chromatin structure" appears to be a common feature of EETosis. In this review, we describe several approaches that visualize EETs/EETosis in clinical samples and in vitro studies using isolated human eosinophils. EETs/EETosis can be observed using simple chemical or fluorescence staining, immunostaining, and electron microscopy, although it is noteworthy that visualization of EETs is greatly changed by sample preparation including the extracellular space of EETotic cells and shear flow. Considering the multiple aspects of biological significance, further study into EETs/EETosis is warranted to give a detailed understanding of the roles played in homeostasis and disease pathogenesis.


Subject(s)
Cell Death , Eosinophils/physiology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Animals , Cell Degranulation/immunology , Disease Susceptibility , Homeostasis/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL