Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
Add more filters

Publication year range
1.
Nature ; 627(8004): 594-603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383780

ABSTRACT

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Subject(s)
Cognition , Embryo, Mammalian , Embryonic Development , Histone Demethylases , Wnt Signaling Pathway , Animals , Humans , Mice , Anxiety , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Gene Expression Profiling , Histone Demethylases/genetics , Histone Demethylases/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Memory , Mice, Knockout , Mutation , Neurogenesis/genetics , Wnt Signaling Pathway/drug effects
2.
Am J Hum Genet ; 111(8): 1673-1699, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39084224

ABSTRACT

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Transcriptional Activation , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Neurons/metabolism , Neurons/cytology , RNA/genetics , RNA/metabolism , CRISPR-Cas Systems
3.
PLoS Genet ; 20(10): e1011428, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39405291

ABSTRACT

Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here, we show that PHF6 protein levels are greatly reduced in cells derived from a subset of patients with BFLS. We report the phenotypic, anatomical, cellular and molecular characterization of the brain in males and females in two mouse models of BFLS, namely loss of Phf6 in the germline and nervous system-specific deletion of Phf6. We show that loss of PHF6 resulted in spontaneous seizures occurring via a neural intrinsic mechanism. Histological and morphological analysis revealed a significant enlargement of the lateral ventricles in adult Phf6-deficient mice, while other brain structures and cortical lamination were normal. Phf6 deficient neural precursor cells showed a reduced capacity for self-renewal and increased differentiation into neurons. Phf6 deficient cortical neurons commenced spontaneous neuronal activity prematurely suggesting precocious neuronal maturation. We show that loss of PHF6 in the foetal cortex and isolated cortical neurons predominantly caused upregulation of genes, including Reln, Nr4a2, Slc12a5, Phip and ZIC family transcription factor genes, involved in neural development and function, providing insight into the molecular effects of loss of PHF6 in the developing brain.


Subject(s)
Mental Retardation, X-Linked , Repressor Proteins , Seizures , Animals , Female , Humans , Male , Mice , Calcinosis/genetics , Calcinosis/pathology , Calcinosis/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Face/abnormalities , Fingers/abnormalities , Hypogonadism/genetics , Hypogonadism/pathology , Hypogonadism/metabolism , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Mice, Knockout , Neural Stem Cells/metabolism , Obesity , Repressor Proteins/genetics , Repressor Proteins/metabolism , Seizures/genetics , Seizures/metabolism , Transcription, Genetic , Vestibular Diseases/genetics , Vestibular Diseases/pathology
4.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868206

ABSTRACT

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
5.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37552066

ABSTRACT

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Subject(s)
Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Child , Zebrafish/genetics , Zebrafish/metabolism , Caenorhabditis elegans/metabolism , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Megalencephaly/genetics , Developmental Disabilities/genetics , Mutation, Missense/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
6.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35108495

ABSTRACT

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Subject(s)
Neurodevelopmental Disorders , Peripheral Nervous System Diseases , Animals , Axons/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal , Humans , Mice , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Spasticity/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Zebrafish/genetics , Zebrafish/metabolism
7.
Mol Psychiatry ; 29(7): 2199-2210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38454084

ABSTRACT

Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, ß-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of ß-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.


Subject(s)
Brain , Cadherins , Hippocampus , Proteomics , Protocadherins , Wnt Signaling Pathway , beta Catenin , Animals , Cadherins/metabolism , Cadherins/genetics , Mice , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , beta Catenin/metabolism , beta Catenin/genetics , Proteomics/methods , Brain/metabolism , Brain/growth & development , Humans , Hippocampus/metabolism , Epilepsy/metabolism , Epilepsy/genetics , Cerebral Cortex/metabolism , Mice, Inbred C57BL
8.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526744

ABSTRACT

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Subject(s)
GTPase-Activating Proteins , Heterozygote , Microcephaly , Mutation, Missense , Neurodevelopmental Disorders , Humans , Microcephaly/genetics , Female , Male , Child, Preschool , GTPase-Activating Proteins/genetics , Child , Neurodevelopmental Disorders/genetics , Loss of Function Mutation , Animals , Developmental Disabilities/genetics , Mice , Infant , Phenotype , Adolescent
9.
Genet Med ; 26(10): 101220, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39041334

ABSTRACT

PURPOSE: The gold standard for identification of post-zygotic variants (PZVs) is droplet digital polymerase chain reaction or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants. METHOD: Our pipelines detect PZV in parents (gonosomal mosaicism [pGoM]) and children (somatic mosaicism, "M3"). We applied them to research exome sequencing (ES) data from the Australian Cerebral Palsy Biobank (n = 145 trios) and Simons Simplex Collection (n = 405 families). Candidate mosaic variants were validated using deep amplicon sequencing or droplet digital polymerase chain reaction. RESULTS: 69.2% (M3trio), 63.9% (M3single), and 92.7% (pGoM) of detected variants were validated, with 48.6%, 56.7%, and 26.2% of variants, respectively, meeting strict criteria for mosaicism. In the Australian Cerebral Palsy Biobank, 16.6% of probands and 20.7% of parents had at least 1 true-positive somatic or pGoM variant, respectively. A large proportion of PZVs detected in Simons Simplex Collection parents (79.8%) and child (94.5%) were not previously reported. We reclassified 3.7% to 8.0% of germline de novo variants as mosaic. CONCLUSION: Many PZVs were incorrectly classified as germline variants or missed by previous approaches. Systematic application of our pipelines could increase genetic diagnostic rate, improve estimates of recurrence risk in families, and benefit novel disease gene identification.


Subject(s)
Exome Sequencing , Mosaicism , Humans , Exome Sequencing/methods , Female , Mutation/genetics , Male , High-Throughput Nucleotide Sequencing/methods , Child , Exome/genetics , Australia , Cerebral Palsy/genetics , Cerebral Palsy/diagnosis , Zygote
10.
Brain ; 146(12): 5086-5097, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37977818

ABSTRACT

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Subject(s)
Stuttering , Humans , Animals , Mice , Stuttering/genetics , Stuttering/pathology , Peptidyl-Prolyl Isomerase F , Speech , Brain/diagnostic imaging , Brain/pathology , Brain Mapping
11.
Nature ; 562(7726): 268-271, 2018 10.
Article in English | MEDLINE | ID: mdl-30258228

ABSTRACT

There are thousands of rare human disorders that are caused by single deleterious, protein-coding genetic variants1. However, patients with the same genetic defect can have different clinical presentations2-4, and some individuals who carry known disease-causing variants can appear unaffected5. Here, to understand what explains these differences, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders such as global developmental delay and autism, often in combination with abnormalities of other organ systems. Although the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome-wide common variant burden by showing, in an independent sample of 728 trios (comprising a child plus both parents) from the same cohort, that this burden is over-transmitted from parents to children with neurodevelopmental disorders. Our common-variant signal is significantly positively correlated with genetic predisposition to lower educational attainment, decreased intelligence and risk of schizophrenia. We found that common-variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, which suggests that common-variant risk affects patients both with and without a monogenic diagnosis. In addition, previously published common-variant scores for autism, height, birth weight and intracranial volume were all correlated with these traits within our cohort, which suggests that phenotypic expression in individuals with monogenic disorders is affected by the same variants as in the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders that are typically considered to be monogenic.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Neurodevelopmental Disorders/genetics , Rare Diseases/genetics , Autistic Disorder/genetics , Birth Weight/genetics , Body Height/genetics , Case-Control Studies , Cohort Studies , Developmental Disabilities/genetics , Female , Genome-Wide Association Study , Humans , Intelligence/genetics , Linkage Disequilibrium , Male , Multifactorial Inheritance/genetics , Phenotype , Schizophrenia/genetics
12.
Hum Mol Genet ; 30(7): 575-594, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33772537

ABSTRACT

The PHF6 mutation c.1024C > T; p.R342X, is a recurrent cause of Börjeson-Forssman-Lehmann Syndrome (BFLS), a neurodevelopmental disorder characterized by moderate-severe intellectual disability, truncal obesity, gynecomastia, hypogonadism, long tapering fingers and large ears (MIM#301900). Here, we generated transgenic mice with the identical substitution (R342X mice) using CRISPR technology. We show that the p.R342X mutation causes a reduction in PHF6 protein levels, in both human and mice, from nonsense-mediated decay and nonsense-associated alternative splicing, respectively. Magnetic resonance imaging studies indicated that R342X mice had a reduced brain volume on a mixed genetic background but developed hydrocephaly and a high incidence of postnatal death on a C57BL/6 background. Cortical development proceeded normally, while hippocampus and hypothalamus relative brain volumes were altered. A hypoplastic anterior pituitary was also observed that likely contributes to the small size of the R342X mice. Behavior testing demonstrated deficits in associative learning, spatial memory and an anxiolytic phenotype. Taken together, the R342X mice represent a good preclinical model of BFLS that will allow further dissection of PHF6 function and disease pathogenesis.


Subject(s)
Disease Models, Animal , Epilepsy/genetics , Face/abnormalities , Fingers/abnormalities , Genetic Predisposition to Disease/genetics , Growth Disorders/genetics , Hypogonadism/genetics , Mental Retardation, X-Linked/genetics , Mutation , Obesity/genetics , Repressor Proteins/genetics , Animals , Association Learning/physiology , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cells, Cultured , Epilepsy/metabolism , Epilepsy/physiopathology , Face/physiopathology , Female , Fingers/physiopathology , Gene Expression Profiling/methods , Growth Disorders/metabolism , Growth Disorders/physiopathology , Humans , Hypogonadism/metabolism , Hypogonadism/physiopathology , Magnetic Resonance Imaging/methods , Male , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Obesity/metabolism , Obesity/physiopathology , RNA-Seq/methods , Repressor Proteins/metabolism , Spatial Memory/physiology
13.
Am J Hum Genet ; 107(4): 654-669, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937144

ABSTRACT

There is growing recognition that epivariations, most often recognized as promoter hypermethylation events that lead to gene silencing, are associated with a number of human diseases. However, little information exists on the prevalence and distribution of rare epigenetic variation in the human population. In order to address this, we performed a survey of methylation profiles from 23,116 individuals using the Illumina 450k array. Using a robust outlier approach, we identified 4,452 unique autosomal epivariations, including potentially inactivating promoter methylation events at 384 genes linked to human disease. For example, we observed promoter hypermethylation of BRCA1 and LDLR at population frequencies of ∼1 in 3,000 and ∼1 in 6,000, respectively, suggesting that epivariations may underlie a fraction of human disease which would be missed by purely sequence-based approaches. Using expression data, we confirmed that many epivariations are associated with outlier gene expression. Analysis of variation data and monozygous twin pairs suggests that approximately two-thirds of epivariations segregate in the population secondary to underlying sequence mutations, while one-third are likely sporadic events that occur post-zygotically. We identified 25 loci where rare hypermethylation coincided with the presence of an unstable CGG tandem repeat, validated the presence of CGG expansions at several loci, and identified the putative molecular defect underlying most of the known folate-sensitive fragile sites in the genome. Our study provides a catalog of rare epigenetic changes in the human genome, gives insight into the underlying origins and consequences of epivariations, and identifies many hypermethylated CGG repeat expansions.


Subject(s)
BRCA1 Protein/genetics , Epigenesis, Genetic , Genetic Diseases, Inborn/genetics , Genome, Human , Receptors, LDL/genetics , Trinucleotide Repeat Expansion , BRCA1 Protein/metabolism , DNA Methylation , Female , Folic Acid/metabolism , Gene Silencing , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/pathology , Genetic Loci , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Male , Promoter Regions, Genetic , Receptors, LDL/metabolism , Twins, Monozygotic
14.
Am J Hum Genet ; 107(6): 1157-1169, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33159883

ABSTRACT

Interpretation of the significance of maternally inherited X chromosome variants in males with neurocognitive phenotypes continues to present a challenge to clinical geneticists and diagnostic laboratories. Here we report 14 males from 9 families with duplications at the Xq13.2-q13.3 locus with a common facial phenotype, intellectual disability (ID), distinctive behavioral features, and a seizure disorder in two cases. All tested carrier mothers had normal intelligence. The duplication arose de novo in three mothers where grandparental testing was possible. In one family the duplication segregated with ID across three generations. RLIM is the only gene common to our duplications. However, flanking genes duplicated in some but not all the affected individuals included the brain-expressed genes NEXMIF, SLC16A2, and the long non-coding RNA gene FTX. The contribution of the RLIM-flanking genes to the phenotypes of individuals with different size duplications has not been fully resolved. Missense variants in RLIM have recently been identified to cause X-linked ID in males, with heterozygous females typically having normal intelligence and highly skewed X chromosome inactivation. We detected consistent and significant increase of RLIM mRNA and protein levels in cells derived from seven affected males from five families with the duplication. Subsequent analysis of MDM2, one of the targets of the RLIM E3 ligase activity, showed consistent downregulation in cells from the affected males. All the carrier mothers displayed normal RLIM mRNA levels and had highly skewed X chromosome inactivation. We propose that duplications at Xq13.2-13.3 including RLIM cause a recognizable but mild neurocognitive phenotype in hemizygous males.


Subject(s)
Chromosome Duplication , Gene Dosage , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , X Chromosome Inactivation , Adolescent , Australia , Child , Child, Preschool , Face , Female , Hemizygote , Heterozygote , Humans , Male , Middle Aged , Monocarboxylic Acid Transporters/genetics , Mothers , Mutation, Missense , Nerve Tissue Proteins/genetics , Pedigree , Phenotype , Symporters/genetics , Ubiquitin-Protein Ligases/metabolism , Young Adult
15.
Development ; 147(21)2020 10 23.
Article in English | MEDLINE | ID: mdl-32994169

ABSTRACT

Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6-/Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.


Subject(s)
Down-Regulation , Epilepsy/metabolism , Face/abnormalities , Fingers/abnormalities , Growth Disorders/metabolism , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone/metabolism , Hypogonadism/metabolism , Insulin-Like Growth Factor I/metabolism , Mental Retardation, X-Linked/metabolism , Obesity/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Animals, Newborn , Disease Models, Animal , Epilepsy/blood , Epilepsy/pathology , Face/pathology , Fingers/pathology , Growth Disorders/blood , Growth Disorders/pathology , Growth Hormone/blood , Hypogonadism/blood , Hypogonadism/pathology , Hypothalamus/metabolism , Insulin-Like Growth Factor I/genetics , Male , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nervous System/metabolism , Obesity/blood , Obesity/pathology , Organ Specificity , Pituitary Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
16.
Epilepsia ; 64 Suppl 1: S14-S21, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37021642

ABSTRACT

Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions within six different genes to date (SAMD12, STARD7, MARCHF6, YEATS2, TNRC6A, and RAPGEF2). FAME occurs worldwide; however, repeat expansions in particular genes have regional geographical distributions. FAME repeat expansions are dynamic in nature, changing in length and structure within germline and somatic tissues. This variation poses challenges for molecular diagnosis such that molecular methods used to identify FAME repeat expansions typically require a trade-off between cost and efficiency. A rigorous evaluation of the sensitivity and specificity of each molecular approach remains to be performed. The origin of FAME repeat expansions and the genetic and environmental factors that modulate repeat variability are not well defined. Longer repeats and particular arrangements of the TTTTA and TTTCA motifs within an expansion are correlated with earlier onset and increased severity of disease. Other factors such as maternal or paternal inheritance, parental age, and repeat length alone have been suggested to influence repeat variation; however, further research is required to confirm this. The history of FAME genetics to the present is a chronicle of perseverance and predominantly collaborative efforts that yielded a successful outcome. The discovery of FAME repeats will spark progress toward a deeper understanding of the molecular pathogenesis of FAME, discovery of new loci, and development of cell and animal models.


Subject(s)
Epilepsies, Myoclonic , Humans , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/pathology , Pedigree , Research
17.
Brain ; 145(1): 119-141, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34077496

ABSTRACT

Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.


Subject(s)
Cerebral Palsy , Intellectual Disability , Animals , Cerebral Palsy/genetics , Cognition , Cohort Studies , Comorbidity , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Mice
18.
Nature ; 551(7680): 389-393, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29144457

ABSTRACT

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Subject(s)
AlkB Enzymes/metabolism , DNA Adducts/metabolism , DNA Repair , Multiprotein Complexes/metabolism , Signal Transduction , Trichothiodystrophy Syndromes/genetics , Ubiquitin/metabolism , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism , Alkylating Agents/pharmacology , Alkylation , Amino Acid Sequence , DNA Adducts/chemistry , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Genes, X-Linked , Humans , Kinetics , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Polyubiquitin/metabolism , RNA Polymerase II/metabolism , RNA Splicing , Trichothiodystrophy Syndromes/metabolism , Trichothiodystrophy Syndromes/pathology , Ubiquitination
19.
Hum Mol Genet ; 29(15): 2568-2578, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32667670

ABSTRACT

Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.


Subject(s)
Codon, Nonsense/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Speech Disorders/genetics , Cell Line , Child, Preschool , Gene Regulatory Networks/genetics , Humans , Infant , Loss of Function Mutation/genetics , Male , Neurodevelopmental Disorders/pathology , Nonsense Mediated mRNA Decay/genetics , RNA Splicing/genetics , Silent Mutation/genetics , Speech Disorders/pathology
20.
Am Heart J ; 244: 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-34670123

ABSTRACT

BACKGROUND: The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS: Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION: We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.


Subject(s)
Heart Defects, Congenital , Transposition of Great Vessels , Arteries , Brain/diagnostic imaging , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Transposition of Great Vessels/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL