Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36200994

ABSTRACT

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Subject(s)
Histone Deacetylase Inhibitors , Isoenzymes , Humans , Vorinostat , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , HeLa Cells , Histone Deacetylases/chemistry , Polyamines/pharmacology , Zinc , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
2.
Chemistry ; 23(63): 15917-15921, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28944573

ABSTRACT

The first stereoselective total synthesis of the natural product pyrronazol B, which contains a chlorinated pyrrole-oxazole-pyrone framework, has been achieved. Genome sequencing of the myxobacterial producer strain Nannocystis pusilla Ari7 led to the identification of the putative biosynthetic gene cluster. The proposed biosynthetic pathway was supported by feeding experiments with stable isotopes of three biosynthetic building blocks, namely l-proline, l-serine, and l-methionine.


Subject(s)
Biological Products/chemistry , Myxococcales/chemistry , Oxazoles/chemistry , Pyrones/chemistry , Pyrroles/chemistry , Biological Products/chemical synthesis , Biological Products/metabolism , Biosynthetic Pathways/genetics , Models, Molecular , Multigene Family , Myxococcales/genetics , Myxococcales/metabolism , Oxazoles/chemical synthesis , Oxazoles/metabolism , Pyrones/chemical synthesis , Pyrones/metabolism , Pyrroles/chemical synthesis , Pyrroles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL