Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 61(19): 7523-7529, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35510809

ABSTRACT

In this work, we present the new [Bi14(µ3-O)9(µ4-O)2(µ3-OH)5(3,5-DSB)5(H2O)3]·7H2O, BiPF-4 (bismuth polymeric framework─4) MOF, its microwave hydrothermal synthesis, as well as its behavior as a heterogeneous catalyst in the multicomponent organic Strecker reaction. The BiPF-4 material shows a three-dimensional (3D) framework formed by peculiar inorganic oxo-hydroxo-bismutate layers connected among them through the 3,5-dsb (3,5-disulfobenzoic acid) linker. These two-dimensional (2D) layers, built by junctions of Bi7 polyhedra SBU, provide the material of many Lewis acid catalytic sites because of the mixing in the metal coordination number. BiPF-4 is a highly robust, green, and stable material that demonstrates an excellent heterogeneous catalytic activity in the multicomponent Strecker reaction of ketones carried out in one-pot synthesis, bringing a reliable platform of novel green materials based on nontoxic and abundant metal sources such as bismuth.

2.
Angew Chem Int Ed Engl ; 61(37): e202209335, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35841537

ABSTRACT

Bismuth metal-organic frameworks (MOFs) as heterogeneous catalysts are scarce, and there is little knowledge on the influence of the MOF features on their resulting activity and behavior. Here, we present the synthesis, characterization, and catalytic activity in the one-pot multicomponent Strecker reaction with ketones of three new MOFs prepared with the combination of indium or bismuth and 4,4',4'',4'''-methanetetrayltetrabenzoic acid. One of them, denoted BiPF-7, is very robust and chemically stable, and demonstrates a high activity in the formation of the desired α-aminonitriles. The interaction of the catalytic substrates with the metal centers in this MOF has been crystallographically characterized, showcasing a concerted framework adaptability process that involves structural changes in framework components that are not directly involved in the binding of the guests.

3.
Chem Mater ; 35(24): 10394-10402, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38344401

ABSTRACT

Heterobimetallic Metal-Organic Frameworks (MOFs) synergically combine the properties of two metal ions, thus offering significant advantages over homometallic MOFs in gas storage, separation, and catalysis, among other applications. However, these remain centered on bulk materials, while applications that require functional coatings on solid supports are not developed. We explore for the first time the deposition of heterometallic Ti-based MOF thin films using vapor-assisted conversion on substrates functionalized with a self-assembled monolayer. Furthermore, metal-induced dynamic topological transformation allows the conversion of MUV-10(Ca) films into MUV-101(Co) and MUV-102(Cu), which is not accessible through direct synthesis, without morphologically altering the films. These nonconventional thin-film deposition techniques enable homogeneous and crystalline coatings of heterometallic titanium MOFs that also maintain their corresponding porosity.

SELECTION OF CITATIONS
SEARCH DETAIL