Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 165(5): 1224-1237, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27114036

ABSTRACT

The unicellular ancestor of animals had a complex repertoire of genes linked to multicellular processes. This suggests that changes in the regulatory genome, rather than in gene innovation, were key to the origin of animals. Here, we carry out multiple functional genomic assays in Capsaspora owczarzaki, the unicellular relative of animals with the largest known gene repertoire for transcriptional regulation. We show that changing chromatin states, differential lincRNA expression, and dynamic cis-regulatory sites are associated with life cycle transitions in Capsaspora. Moreover, we demonstrate conservation of animal developmental transcription-factor networks and extensive network interconnection in this premetazoan organism. In contrast, however, Capsaspora lacks animal promoter types, and its regulatory sites are small, proximal, and lack signatures of animal enhancers. Overall, our results indicate that the emergence of animal multicellularity was linked to a major shift in genome cis-regulatory complexity, most notably the appearance of distal enhancer regulation.


Subject(s)
Biological Evolution , Eukaryota/genetics , Regulatory Elements, Transcriptional , Animals , Eukaryota/classification , Eukaryota/cytology , Gene Regulatory Networks , Genome , Histones/metabolism , Humans , Protein Processing, Post-Translational , RNA, Untranslated
2.
Nature ; 616(7957): 495-503, 2023 04.
Article in English | MEDLINE | ID: mdl-37046085

ABSTRACT

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Subject(s)
Animal Fins , Biological Evolution , Genome , Genomics , Skates, Fish , Animals , Animal Fins/anatomy & histology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Skates, Fish/anatomy & histology , Skates, Fish/genetics , Zebrafish/genetics , Genes, Reporter/genetics
3.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829909

ABSTRACT

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Subject(s)
Chromosomes , Evolution, Molecular , Genome , Phylogeny , Animals , Chromosomes/genetics , Genome/genetics , Synteny , Genetic Linkage , Chordata/genetics
4.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36243009

ABSTRACT

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Subject(s)
Corneal Dystrophies, Hereditary , Tomography, Optical Coherence , Adult , Animals , Humans , Pedigree , Retina/metabolism , Xenopus laevis/genetics
5.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263228

ABSTRACT

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Lancelets , Zebrafish , Animals , Biological Evolution , Gastrulation/genetics , Lancelets/embryology , Lancelets/genetics , Zebrafish/embryology , Zebrafish/genetics
6.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34750251

ABSTRACT

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


Subject(s)
Animal Fins/growth & development , Gene Regulatory Networks/genetics , Nerve Tissue Proteins/genetics , Oryzias/genetics , Zinc Finger Protein Gli3/genetics , Animals , Biological Evolution , Body Patterning/genetics , Cell Proliferation/genetics , Extremities/growth & development , Fish Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Mice
7.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35276009

ABSTRACT

Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.


Subject(s)
Gene Regulatory Networks , Lancelets , Animals , Epidermis/metabolism , Gene Expression Regulation, Developmental , Nervous System/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Development ; 146(13)2019 06 21.
Article in English | MEDLINE | ID: mdl-31142542

ABSTRACT

Yap1/Taz are well-known Hippo effectors triggering complex transcriptional programs controlling growth, survival and cancer progression. Here, we describe yap1b, a new Yap1/Taz family member with a unique transcriptional activation domain that cannot be phosphorylated by Src/Yes kinases. We show that yap1b evolved specifically in euteleosts (i.e. including medaka but not zebrafish) by duplication and adaptation of yap1. Using DamID-seq, we generated maps of chromatin occupancy for Yap1, Taz (Wwtr1) and Yap1b in gastrulating zebrafish and medaka embryos. Our comparative analyses uncover the genetic programs controlled by Yap family proteins during early embryogenesis, and show largely overlapping targets for Yap1 and Yap1b. CRISPR/Cas9-induced mutation of yap1b in medaka does not result in an overt phenotype during embryogenesis or adulthood. However, yap1b mutation strongly enhances the embryonic malformations observed in yap1 mutants. Thus yap1-/-; yap1b-/- double mutants display more severe body flattening, eye misshaping and increased apoptosis than yap1-/- single mutants, thus revealing overlapping gene functions. Our results indicate that, despite its divergent transactivation domain, Yap1b cooperates with Yap1 to regulate cell survival and tissue morphogenesis during early development.


Subject(s)
Embryo Loss/genetics , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Trans-Activators/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Embryo Loss/veterinary , Embryo, Nonmammalian , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Mutation , Oryzias/embryology , Oryzias/genetics , Protein Domains/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Trans-Activators/chemistry , Trans-Activators/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/physiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
9.
Mol Biol Evol ; 37(10): 2857-2864, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32421818

ABSTRACT

We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Genes, Regulator , Polyploidy , Vertebrates/genetics , Animals , Chromosome Duplication , Genome, Human , Humans , Regulatory Elements, Transcriptional
10.
Proc Natl Acad Sci U S A ; 115(16): E3731-E3740, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610331

ABSTRACT

Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfng/sgca regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 4C-seq, ATAC-seq, transgenesis, and CRISPR-induced deletions, we characterized this regulatory domain, identifying hindbrain boundary-specific cis-regulatory elements. Our results suggest that the capacity of boundaries to act as an elastic mesh for segregating rhombomeric cells evolved by cooption of critical genes to a novel regulatory block, refining the mechanisms for hindbrain segmentation.


Subject(s)
Actomyosin/physiology , Gene Expression Regulation, Developmental , Rhombencephalon/embryology , Sarcoglycans/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , rac GTP-Binding Proteins/physiology , Animals , Body Patterning/genetics , CRISPR-Cas Systems , Cell Movement , Characidae/genetics , Characidae/physiology , Chromatin/genetics , Chromatin/ultrastructure , Evolution, Molecular , Fishes/classification , Fishes/genetics , Morphogenesis , Mutagenesis, Site-Directed , Neurogenesis , Phylogeny , Sarcoglycans/genetics , Species Specificity , Zebrafish/genetics , Zebrafish Proteins/genetics , rac GTP-Binding Proteins/genetics
11.
PLoS Genet ; 14(5): e1007375, 2018 05.
Article in English | MEDLINE | ID: mdl-29723190

ABSTRACT

Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.


Subject(s)
Animal Structures/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Animal Structures/growth & development , Animals , Animals, Genetically Modified , DNA-Binding Proteins/genetics , Drosophila melanogaster/classification , Evolution, Molecular , Larva/genetics , Larva/growth & development , MicroRNAs/genetics , Mutation , Transcription Factors/genetics
12.
Dev Biol ; 448(2): 71-87, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30661644

ABSTRACT

Ascidian species of the Phallusia and Ciona genera are distantly related, their last common ancestor dating several hundred million years ago. Although their genome sequences have extensively diverged since this radiation, Phallusia and Ciona species share almost identical early morphogenesis and stereotyped cell lineages. Here, we explored the evolution of transcriptional control between P. mammillata and C. robusta. We combined genome-wide mapping of open chromatin regions in both species with a comparative analysis of the regulatory sequences of a test set of 10 pairs of orthologous early regulatory genes with conserved expression patterns. We find that ascidian chromatin accessibility landscapes obey similar rules as in other metazoa. Open-chromatin regions are short, highly conserved within each genus and cluster around regulatory genes. The dynamics of chromatin accessibility and closest-gene expression are strongly correlated during early embryogenesis. Open-chromatin regions are highly enriched in cis-regulatory elements: 73% of 49 open chromatin regions around our test genes behaved as either distal enhancers or proximal enhancer/promoters following electroporation in Phallusia eggs. Analysis of this datasets suggests a pervasive use in ascidians of "shadow" enhancers with partially overlapping activities. Cross-species electroporations point to a deep conservation of both the trans-regulatory logic between these distantly-related ascidians and the cis-regulatory activities of individual enhancers. Finally, we found that the relative order and approximate distance to the transcription start site of open chromatin regions can be conserved between Ciona and Phallusia species despite extensive sequence divergence, a property that can be used to identify orthologous enhancers, whose regulatory activity can partially diverge.


Subject(s)
Ciona/embryology , Ciona/genetics , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Genetic Variation , Regulatory Sequences, Nucleic Acid/genetics , Urochordata/embryology , Urochordata/genetics , Animals , Base Sequence , Body Patterning/genetics , Chromatin/genetics , Conserved Sequence/genetics , Embryonic Development/genetics , Enhancer Elements, Genetic , Gastrula/embryology , Gene Expression Regulation, Developmental , Species Specificity , Time Factors
13.
Nature ; 507(7492): 371-5, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24646999

ABSTRACT

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.


Subject(s)
Homeodomain Proteins/genetics , Introns/genetics , Mixed Function Oxygenases/genetics , Obesity/genetics , Oxo-Acid-Lyases/genetics , Proteins/genetics , Transcription Factors/genetics , Adipose Tissue/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Basal Metabolism/genetics , Body Mass Index , Body Weight/genetics , Brain/metabolism , Diabetes Mellitus, Type 2/genetics , Diet , Genes, Dominant/genetics , Homeodomain Proteins/metabolism , Humans , Hypothalamus/metabolism , Male , Mice , Phenotype , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Thinness/genetics , Transcription Factors/deficiency , Transcription Factors/metabolism , Zebrafish/embryology , Zebrafish/genetics
14.
Nucleic Acids Res ; 46(18): 9414-9431, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30016465

ABSTRACT

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.


Subject(s)
Genome, Protozoan/genetics , Open Reading Frames/genetics , Plasmodium falciparum/genetics , Sequence Analysis, DNA , Binding Sites , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Chromosome Mapping , Epigenesis, Genetic/physiology , High-Throughput Nucleotide Sequencing , Humans , Life Cycle Stages/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA/methods , Transcription Factors/metabolism , Transcription Initiation Site
15.
PLoS Genet ; 13(8): e1006985, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28846746

ABSTRACT

Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.


Subject(s)
Chromatin/genetics , Embryonic Development/genetics , Heart Ventricles/growth & development , Heart/growth & development , Repressor Proteins/genetics , Animals , CCCTC-Binding Factor , Cell Differentiation/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Heart/embryology , Heart Ventricles/embryology , Mice , Mitochondria/genetics , Mitochondria/metabolism , Organogenesis/genetics , Promoter Regions, Genetic , Protein Binding , Transcriptional Activation/genetics
16.
PLoS Comput Biol ; 14(3): e1006030, 2018 03.
Article in English | MEDLINE | ID: mdl-29522512

ABSTRACT

The use of 3C-based methods has revealed the importance of the 3D organization of the chromatin for key aspects of genome biology. However, the different caveats of the variants of 3C techniques have limited their scope and the range of scientific fields that could benefit from these approaches. To address these limitations, we present 4Cin, a method to generate 3D models and derive virtual Hi-C (vHi-C) heat maps of genomic loci based on 4C-seq or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome organization is determined by integrative consideration of the spatial distances derived from as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together with their associated vHi-C maps, allow the inference of all chromosomal contacts within a given genomic region, facilitating the identification of Topological Associating Domains (TAD) boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative to other available techniques while providing a comprehensive 3D topological profiling. By studying TAD modifications in genomic structural variants associated to disease phenotypes and performing cross-species evolutionary comparisons of 3D chromatin structures in a quantitative manner, we demonstrate the broad potential and novel range of applications of our method.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Imaging, Three-Dimensional/methods , Chromatin/physiology , Chromosomes , Computer Simulation , Genome , Genomics/methods , Nucleic Acid Conformation , Sequence Analysis, DNA/methods , Software
17.
Development ; 142(17): 3009-20, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26253404

ABSTRACT

Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degree. Sporadic and hereditary microphthalmos have been associated with heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, which encodes a transcription factor with evolutionarily conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment in adult mice. By combining analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to its preferential association with Hox-Pbx BSs in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components of the Notch signaling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1(-/-) embryos boundaries among the different eye territories are shifted or blurred. We propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, and represents an additional candidate for syndromic cases of these ocular malformations.


Subject(s)
Eye/embryology , Eye/metabolism , Gene Regulatory Networks , Homeodomain Proteins/metabolism , Microphthalmos/embryology , Microphthalmos/genetics , Neoplasm Proteins/metabolism , Aging/pathology , Animals , Apoptosis/genetics , Base Sequence , Binding Sites , Blood Vessels/metabolism , Blood Vessels/pathology , Chromatin Immunoprecipitation , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Enhancer Elements, Genetic/genetics , Haploinsufficiency/genetics , Hematopoiesis/genetics , Homeodomain Proteins/genetics , Humans , Mice , Molecular Sequence Data , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neurogenesis/genetics , Protein Binding , Receptors, Notch/metabolism , Signal Transduction/genetics
18.
Proc Natl Acad Sci U S A ; 112(32): E4428-37, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216945

ABSTRACT

Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.


Subject(s)
Genome, Human , Insulator Elements/genetics , Mammals/genetics , Retroelements/genetics , Animals , Base Sequence , Chromatin/metabolism , Computational Biology , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Humans , Organ Specificity/genetics , Reproducibility of Results , T-Lymphocytes/metabolism
19.
Proc Natl Acad Sci U S A ; 112(24): 7542-7, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26034287

ABSTRACT

Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution.


Subject(s)
Evolution, Molecular , Repressor Proteins/chemistry , Repressor Proteins/genetics , Animals , Animals, Genetically Modified , Base Sequence , Binding Sites/genetics , CCCTC-Binding Factor , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence , DNA/genetics , Enhancer Elements, Genetic , Genes, Homeobox , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Models, Genetic , Multigene Family , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Repressor Proteins/metabolism , Strongylocentrotus purpuratus/genetics , Zebrafish/genetics
20.
Proc Natl Acad Sci U S A ; 112(3): 803-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25535365

ABSTRACT

There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.


Subject(s)
Fishes/anatomy & histology , Animals , Enhancer Elements, Genetic , Fishes/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Mice
SELECTION OF CITATIONS
SEARCH DETAIL