Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 175(5): 1321-1335.e20, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30445039

ABSTRACT

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.


Subject(s)
Endoplasmic Reticulum/metabolism , Food Preferences , Melanocortins/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Female , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Norepinephrine/pharmacology , Phosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Principal Component Analysis , Receptor, Melanocortin, Type 4/deficiency , Receptor, Melanocortin, Type 4/genetics , X-Box Binding Protein 1/genetics
2.
Nat Med ; 23(12): 1466-1473, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29106399

ABSTRACT

Over 40% of microRNAs (miRNAs) are located in introns of protein-coding genes, and many of these intronic miRNAs are co-regulated with their host genes. In such cases of co-regulation, the products of host genes and their intronic miRNAs can cooperate to coordinately regulate biologically important pathways. Therefore, we screened intronic miRNAs dysregulated in the livers of mouse models of obesity to identify previously uncharacterized protein-coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach revealed that expression of both the gene encoding ectodysplasin A (Eda), the causal gene in X-linked hypohidrotic ectodermal dysplasia (XLHED), and its intronic miRNA, miR-676, was increased in the livers of obese mice. Moreover, hepatic EDA expression is increased in obese human subjects and reduced upon weight loss, and its hepatic expression correlates with systemic insulin resistance. We also found that reducing miR-676 expression in db/db mice increases the expression of proteins involved in fatty acid oxidation and reduces the expression of inflammatory signaling components in the liver. Further, we found that Eda expression in mouse liver is controlled via PPARγ and RXR-α, increases in circulation under conditions of obesity, and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. In accordance with these findings, gain- and loss-of-function approaches reveal that liver-derived EDA regulates systemic glucose metabolism, suggesting that EDA is a hepatokine that can contribute to impaired skeletal muscle insulin sensitivity in obesity.


Subject(s)
Ectodysplasins/genetics , Insulin Resistance/genetics , Liver/metabolism , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Obesity/genetics , Animals , Cells, Cultured , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/metabolism , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Obese , Mice, Transgenic , Obesity/metabolism
3.
J Cereb Blood Flow Metab ; 36(11): 1965-1977, 2016 11.
Article in English | MEDLINE | ID: mdl-26661217

ABSTRACT

We analyzed the metabolic response to cortical spreading depression that drastically increases local energy demand to restore ion homeostasis. During single and multiple cortical spreading depressions in the rat cortex, we simultaneously monitored extracellular levels of glucose and lactate using rapid sampling microdialysis and glucose influx using 18 F-fluorodeoxyglucose positron emission tomography while tracking cortical spreading depression using laser speckle imaging. Combining the acquired data with steady-state requirements we developed a mass-conserving compartment model including neurons and glia that was consistent with the observed data. In summary, our findings are: (1) Early breakdown of glial glycogen provides a major source of energy during increased energy demand and leaves 80% of blood-borne glucose to neurons. (2) Lactate is used solely by neurons and only if extracellular lactate levels are >80% above normal. (3) Although the ratio of oxygen and glucose consumption transiently reaches levels <3, the major part (>90%) of the overall energy supply is from oxidative metabolism. (4) During cortical spreading depression, brain release of lactate exceeds its consumption suggesting that lactate is only a circumstantial energy substrate. Our findings provide a general scenario for the metabolic response to increased cerebral energy demand.


Subject(s)
Cerebral Cortex/metabolism , Cortical Spreading Depression/physiology , Energy Metabolism , Glucose/metabolism , Lactic Acid/metabolism , Animals , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Male , Microdialysis , Models, Neurological , Neuroimaging , Positron-Emission Tomography , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL