Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38113077

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spurred a wide range of approaches to control and combat the disease. However, selecting an effective antiviral drug target remains a time-consuming challenge. Computational methods offer a promising solution by efficiently reducing the number of candidates. In this study, we propose a structure- and deep learning-based approach that identifies vulnerable regions in viral proteins corresponding to drug binding sites. Our approach takes into account the protein dynamics, accessibility and mutability of the binding site and the putative mechanism of action of the drug. We applied this technique to validate drug targeting toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein S. Our findings reveal a conformation- and oligomer-specific glycan-free binding site proximal to the receptor binding domain. This site comprises topologically important amino acid residues. Molecular dynamics simulations of Spike in complex with candidate drug molecules bound to the potential binding sites indicate an equilibrium shifted toward the inactive conformation compared with drug-free simulations. Small molecules targeting this binding site have the potential to prevent the closed-to-open conformational transition of Spike, thereby allosterically inhibiting its interaction with human angiotensin-converting enzyme 2 receptor. Using a pseudotyped virus-based assay with a SARS-CoV-2 neutralizing antibody, we identified a set of hit compounds that exhibited inhibition at micromolar concentrations.


Subject(s)
COVID-19 , Deep Learning , Humans , Protein Binding , Binding Sites , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Antibodies, Viral , Spike Glycoprotein, Coronavirus/metabolism
2.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343224

ABSTRACT

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell , Immunotherapy, Adoptive , Neoplasms/metabolism , Antigens, Neoplasm
3.
Mol Ther ; 30(12): 3658-3676, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35715953

ABSTRACT

The full potential of tumor-infiltrating lymphocyte (TIL) therapy has been hampered by the inadequate activation and low persistence of TILs, as well as inefficient neoantigen presentation by tumors. We transformed tumor cells into artificial antigen-presenting cells (aAPCs) by infecting them with a herpes simplex virus 1 (HSV-1)-based oncolytic virus encoding OX40L and IL12 (OV-OX40L/IL12) to provide local signals for optimum T cell activation. The infected tumor cells displayed increased expression of antigen-presenting cell-related markers and induced enhanced T cell activation and killing in coculture with TILs. Combining OV-OX40L/IL12 and TIL therapy induced complete tumor regression in patient-derived xenograft and syngeneic mouse tumor models and elicited an antitumor immunological memory. In addition, the combination therapy produced aAPC properties in tumor cells, activated T cells, and reprogrammed macrophages to a more M1-like phenotype in the tumor microenvironment. This combination strategy unleashes the full potential of TIL therapy and warrants further evaluation in clinical studies.


Subject(s)
Oncolytic Viruses , Humans , Animals , Mice , Oncolytic Viruses/genetics , Lymphocytes, Tumor-Infiltrating , Antigen-Presenting Cells
4.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33087570

ABSTRACT

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Subject(s)
Emulsions/chemistry , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , DNA/genetics , DNA Primers/genetics , Gene Library , Genome/genetics , Humans , Models, Theoretical , Nucleic Acid Amplification Techniques/methods , Templates, Genetic
5.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32859757

ABSTRACT

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

6.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203702

ABSTRACT

Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.


Subject(s)
Anti-Bacterial Agents , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Fruit , Genome, Bacterial , Genomics
7.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163108

ABSTRACT

The biodiversity of microorganisms is maintained by intricate nets of interactions between competing species. Impaired functionality of human microbiomes correlates with their reduced biodiversity originating from aseptic environmental conditions and antibiotic use. Microbiomes of wild animals are free of these selective pressures. Microbiota provides a protecting shield from invasion by pathogens in the wild, outcompeting their growth in specific ecological niches. We applied ultrahigh-throughput microfluidic technologies for functional profiling of microbiomes of wild animals, including the skin beetle, Siberian lynx, common raccoon dog, and East Siberian brown bear. Single-cell screening of the most efficient killers of the common human pathogen Staphylococcus aureus resulted in repeated isolation of Bacillus pumilus strains. While isolated strains had different phenotypes, all of them displayed a similar set of biosynthetic gene clusters (BGCs) encoding antibiotic amicoumacin, siderophore bacillibactin, and putative analogs of antimicrobials including bacilysin, surfactin, desferrioxamine, and class IId cyclical bacteriocin. Amicoumacin A (Ami) was identified as a major antibacterial metabolite of these strains mediating their antagonistic activity. Genome mining indicates that Ami BGCs with this architecture subdivide into three distinct families, characteristic of the B. pumilus, B. subtilis, and Paenibacillus species. While Ami itself displays mediocre activity against the majority of Gram-negative bacteria, isolated B. pumilus strains efficiently inhibit the growth of both Gram-positive S. aureus and Gram-negative E. coli in coculture. We believe that the expanded antagonistic activity spectrum of Ami-producing B. pumilus can be attributed to the metabolomic profile predetermined by their biosynthetic fingerprint. Ultrahigh-throughput isolation of natural probiotic strains from wild animal microbiomes, as well as their metabolic reprogramming, opens up a new avenue for pathogen control and microbiome remodeling in the food industry, agriculture, and healthcare.


Subject(s)
Animals, Wild/microbiology , Anti-Bacterial Agents/administration & dosage , Bacillus pumilus/chemistry , Escherichia coli/growth & development , Microbiota , Probiotics/administration & dosage , Staphylococcus aureus/growth & development , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/drug effects , Genome, Bacterial , Metabolome , Multigene Family , Probiotics/isolation & purification , Staphylococcus aureus/drug effects
8.
Small ; 17(45): e2102643, 2021 11.
Article in English | MEDLINE | ID: mdl-34605165

ABSTRACT

Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Cell Line, Tumor
9.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181282

ABSTRACT

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coumarins/pharmacology , Gastrointestinal Microbiome/drug effects , High-Throughput Screening Assays/methods , Metabolomics/methods , Animals , Anti-Bacterial Agents/metabolism , Bacillus pumilus/drug effects , Bacillus pumilus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coumarins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial/physiology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Healthy Volunteers , Humans , Lab-On-A-Chip Devices , Proteomics/methods , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Single-Cell Analysis/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Ursidae/microbiology
10.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681871

ABSTRACT

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Subject(s)
Acute Lung Injury/pathology , Cytokines/chemistry , Peptides/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Acute Lung Injury/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Lung/pathology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred ICR , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors
11.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28202731

ABSTRACT

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Subject(s)
Butyrylcholinesterase/chemistry , High-Throughput Screening Assays/instrumentation , Microfluidic Analytical Techniques/methods , Paraoxon/chemistry , Single-Cell Analysis/instrumentation , Antibiosis , Biodiversity , Cell Communication , Emulsions , Flow Cytometry , Genotype , High-Throughput Nucleotide Sequencing , Humans , Microfluidic Analytical Techniques/instrumentation , Oils, Volatile/chemistry , Phenotype , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Water/chemistry
12.
Bioconjug Chem ; 30(5): 1500-1506, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31021608

ABSTRACT

Specific recognition of ligands by surface receptors of eukaryotic cells is a fundamental process in sensing of the exogenous environment, including cell-to-cell communication. These interactions are therefore widely probed in both basic studies and drug development to enhance or interrupt them. Here, we designed a high-throughput publicly available platform for visualization and selection of eukaryotic cells according to the specificity of surface-exposed receptors by consolidation of phage display and flow cytometry techniques. Polypeptide ligands for membrane receptors are incorporated into every copy of p3 protein of M13K07 bacteriophage, which is intracellularly biotinylated to further accept PE-Cy7-labled streptavidin. Transgenic antigen-specific B-cells expressing membrane-tethered lymphoid B-cell receptor in a single-chain format interacted with engineered bacteriophages exposing the polypeptide ligand with an unprecedented selectivity of 97% and a false-positive detection value of 2.0%. Multivalent binding of the phage bioconjugates with the receptor provided significantly better specificity and sensitivity allowing application of engineered bacteriophage bioconjugates at a concentration 3 orders of magnitude lower in comparison with synthetic biotinylated peptide. We suggest that the platform described in this work may be applied either for routine staining or characterization of orphan membrane receptors exposed on the surface of living mammalian cells in their native environment.


Subject(s)
Bacteriophages/chemistry , Receptors, Cell Surface/chemistry , Biotin/chemistry , Cell Surface Display Techniques , Molecular Probes
13.
Mol Cell Proteomics ; 15(7): 2366-78, 2016 07.
Article in English | MEDLINE | ID: mdl-27143409

ABSTRACT

Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.


Subject(s)
Autoantibodies/cerebrospinal fluid , Cytokines/blood , Guillain-Barre Syndrome/immunology , Multiple Sclerosis/immunology , Proteomics/methods , Cell Adhesion , Chromatography, Liquid , Female , Humans , Immunity, Innate , Male , Tandem Mass Spectrometry , Up-Regulation
14.
Molecules ; 22(5)2017 May 15.
Article in English | MEDLINE | ID: mdl-28505143

ABSTRACT

Astrocytes are considered to be an important contributor to central nervous system (CNS) disorders, particularly multiple sclerosis. The transcriptome of these cells is greatly affected by cytokines released by lymphocytes, penetrating the blood-brain barrier-in particular, the classical pro-inflammatory cytokine interferon-gamma (IFNγ). We report here the transcriptomal profiling of astrocytes treated using IFNγ and benztropine, a putative remyelinization agent. Our findings indicate that the expression of genes involved in antigen processing and presentation in astrocytes are significantly upregulated upon IFNγ exposure, emphasizing the critical role of this cytokine in the redirection of immune response towards self-antigens. Data reported herein support previous observations that the IFNγ-induced JAK-STAT signaling pathway may be regarded as a valuable target for pharmaceutical interventions.


Subject(s)
Astrocytes/metabolism , Interferon-gamma/pharmacology , Animals , Astrocytes/drug effects , Benztropine/pharmacology , Mice , MicroRNAs/genetics , Remyelination/drug effects , Transcriptome/drug effects , Transcriptome/genetics
15.
J Biol Chem ; 290(35): 21724-31, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26183779

ABSTRACT

Tag7 (also known as peptidoglycan recognition protein PGRP-S, PGLYRP1), an innate immunity protein, interacts with Hsp70 to form a stable Tag7-Hsp70 complex with cytotoxic activity against some tumor cell lines. In this study, we have analyzed the programmed cell death mechanisms that are induced when cells interact with the Tag7-Hsp70 complex, which was previously shown to be released by human lymphocytes and is cytotoxic to cancer cells. We show that this complex induces both apoptotic and necroptotic processes in the cells. Apoptosis follows the classic caspase-8 and caspase-3 activation pathway. Inhibition of apoptosis leads to a switch to the RIP1-dependent necroptosis. Both of these cytotoxic processes are initiated by the involvement of TNFR1, a receptor for TNF-α. Our results suggest that the Tag7-Hsp70 complex is a novel ligand for this receptor. One of its components, the innate immunity protein Tag7, can bind to the TNFR1 receptor, thereby inhibiting the cytotoxic actions of the Tag7-Hsp70 complex and TNF-α, an acquired immunity cytokine.


Subject(s)
Apoptosis , Cytokines/metabolism , HSP70 Heat-Shock Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Caspases/metabolism , Cell Line , Clone Cells , HEK293 Cells , Humans , Mice , Necrosis , Protein Binding , Tumor Necrosis Factor-alpha/metabolism
16.
FASEB J ; 29(5): 1901-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25634956

ABSTRACT

Recent findings indicate that the ubiquitin-proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain-derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin-independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo. Ten times enhanced release of immunogenic peptides by cerebral proteasomes from EAE-SJL mice is caused by a dramatic shift in the balance between constitutive and ß1i(high) immunoproteasomes in the CNS of SJL mice with EAE. We found that during EAE, ß1i is increased in resident CNS cells, whereas ß5i is imported by infiltrating lymphocytes through the blood-brain barrier. Peptidyl epoxyketone specifically inhibits brain-derived ß1i(high) immunoproteasomes in vitro (kobs/[I] = 240 M(-1)s(-1)), and at a dose of 0.5 mg/kg, it ameliorates ongoing EAE in vivo. Therefore, our findings provide novel insights into myelin metabolism in pathophysiologic conditions and reveal that the ß1i subunit of the immunoproteasome is a potential target to treat autoimmune neurologic diseases.


Subject(s)
Autoimmunity/immunology , Blood-Brain Barrier/metabolism , Brain/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphocyte Activation/immunology , Myelin Basic Protein/metabolism , Proteasome Endopeptidase Complex/immunology , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Cells, Cultured , Chromatography, Liquid , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Immunoenzyme Techniques , Mice , Mice, Inbred BALB C , Myelin Basic Protein/immunology , Myelin Sheath/metabolism , Protein Subunits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Ubiquitin/metabolism
17.
Mediators Inflamm ; 2016: 2847232, 2016.
Article in English | MEDLINE | ID: mdl-27239100

ABSTRACT

We have previously shown that immunodominant MBP peptides encapsulated in mannosylated liposomes (Xemys) effectively suppressed experimental allergic encephalomyelitis (EAE). Within the frames of the successfully completed phase I clinical trial, we investigated changes in the serum cytokine profile after Xemys administration in MS patients. We observed a statistically significant decrease of MCP-1/CCL2, MIP-1ß/CCL4, IL-7, and IL-2 at the time of study completion. In contrast, the serum levels of TNF-α were remarkably elevated. Our data suggest that the administration of Xemys leads to a normalization of cytokine status in MS patients to values commonly reported for healthy subjects. These data are an important contribution for the upcoming Xemys clinical trials.


Subject(s)
Chemokine CCL2/blood , Chemokine CCL4/blood , Interleukin-2/blood , Liposomes/chemistry , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Myelin Basic Protein/therapeutic use , Tumor Necrosis Factor-alpha/blood , Adult , Animals , Female , Humans , Interleukin-7/metabolism , Male , Mice , Middle Aged , Multiple Sclerosis/metabolism , Young Adult
18.
Biotechnol Lett ; 38(7): 1173-80, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27099070

ABSTRACT

OBJECTIVE: Myelin oligodendrocyte glycoprotein (MOG) is one of the major autoantigens in multiple sclerosis (MS), therefore selective depletion of autoreactive lymphocytes exposing MOG-specific B cell receptors (BCRs) would be beneficial in terms of MS treatment. RESULTS: Using E. coli we generated an efficient protocol for the purification of the recombinant immunotoxin DT-MOG composed of the extracellular Ig-like domain of MOG fused in frame with the catalytic and translocation subunits of diphtheria toxin (DT, Corynebacterium diphtheriae) under native conditions with a final yield of 1.5 mg per liter of culture medium. Recombinant DT-MOG was recognized in vitro by MOG-reactive antibodies and has catalytic activity comparable with wild-type DT. CONCLUSION: Enhanced pharmacokinetics (mean residence time in the bloodstream of 61 min) and minimized diminished nonspecific toxicity (LD50 = 1.76 mg/kg) of the DT-MOG makes it a potential candidate for the immunotherapy of MS.


Subject(s)
Diphtheria Toxin/metabolism , Immunotherapy/methods , Immunotoxins/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Receptors, Antigen, B-Cell/metabolism , Diphtheria Toxin/genetics , Diphtheria Toxin/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Immunotoxins/genetics , Immunotoxins/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology
19.
Proc Natl Acad Sci U S A ; 110(4): 1243-8, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23297221

ABSTRACT

The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD(50) of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.


Subject(s)
Butyrylcholinesterase/chemistry , Butyrylcholinesterase/pharmacokinetics , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Amino Acid Sequence , Animals , Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/genetics , CHO Cells , Chemical Warfare Agents/toxicity , Cricetinae , Cricetulus , Humans , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Neuroprotective Agents/administration & dosage , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Sialic Acids/chemistry
20.
J Biol Chem ; 289(25): 17758-66, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24739384

ABSTRACT

The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.


Subject(s)
Autoantigens/metabolism , Multiple Sclerosis , Myelin Basic Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitination , Animals , Autoantigens/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Myelin Basic Protein/genetics , Proteasome Endopeptidase Complex/genetics
SELECTION OF CITATIONS
SEARCH DETAIL