Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cell Biochem ; 120(3): 3056-3070, 2019 03.
Article in English | MEDLINE | ID: mdl-30548288

ABSTRACT

Distal regulatory elements influence the activity of gene promoters through chromatin looping. Chromosome conformation capture (3C) methods permit identification of chromatin contacts across different regions of the genome. However, due to limitations in the resolution of these methods, the detection of functional chromatin interactions remains a challenge. In the current study, we employ an integrated approach to define and characterize the functional chromatin contacts of human pancreatic cancer cells. We applied tethered chromatin capture to define classes of chromatin domains on a genome-wide scale. We identified three types of structural domains (topologically associated, boundary, and gap) and investigated the functional relationships of these domains with respect to chromatin state and gene expression. We uncovered six distinct sub-domains associated with epigenetic states. Interestingly, specific epigenetically active domains are sensitive to treatment with histone acetyltransferase (HAT) inhibitors and decrease in H3K27 acetylation levels. To examine whether the subdomains that change upon drug treatment are functionally linked to transcription factor regulation, we compared TCF7L2 chromatin binding and gene regulation to HAT inhibition. We identified a subset of coding RNA genes that together can stratify pancreatic cancer patients into distinct survival groups. Overall, this study describes a process to evaluate the functional features of chromosome architecture and reveals the impact of epigenetic inhibitors on chromosome architecture and identifies genes that may provide insight into disease outcome.


Subject(s)
Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chromatin/metabolism , Gene Regulatory Networks , Pancreatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Transcription Factor 7-Like 2 Protein/metabolism , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromatin Assembly and Disassembly , Chromosome Mapping , Epigenesis, Genetic/drug effects , Epigenomics , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Nitrobenzenes , Pancreatic Neoplasms/metabolism , Pyrazolones , Transcription Factor 7-Like 2 Protein/genetics
2.
PLoS Genet ; 10(1): e1004102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497837

ABSTRACT

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.


Subject(s)
Enhancer Elements, Genetic , Molecular Sequence Annotation/classification , Prostatic Neoplasms/genetics , Response Elements/genetics , Alleles , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Risk Factors , Transcription Factors/genetics
3.
Article in English | MEDLINE | ID: mdl-26191083

ABSTRACT

BACKGROUND: Due to the hyper-activation of WNT signaling in a variety of cancer types, there has been a strong drive to develop pathway-specific inhibitors with the eventual goal of providing a chemotherapeutic antagonist of WNT signaling to cancer patients. A new category of drugs, called epigenetic inhibitors, are being developed that hold high promise for inhibition of the WNT pathway. The canonical WNT signaling pathway initiates when WNT ligands bind to receptors, causing the nuclear localization of the co-activator ß-catenin (CTNNB1), which leads to an association of ß-catenin with a member of the TCF transcription factor family at regulatory regions of WNT-responsive genes. The TCF/ß-catenin complex then recruits CBP (CREBBP) or p300 (EP300), leading to histone acetylation and gene activation. A current model in the field is that CBP-driven expression of WNT target genes supports proliferation whereas p300-driven expression of WNT target genes supports differentiation. The small molecule inhibitor ICG-001 binds to CBP, but not to p300, and competitively inhibits the interaction of CBP with ß-catenin. Upon treatment of cancer cells, this should reduce expression of CBP-regulated transcription, leading to reduced tumorigenicity and enhanced differentiation. RESULTS: We have compared the genome-wide effects on the transcriptome after treatment with ICG-001 (the specific CBP inhibitor) versus C646, a compound that competes with acetyl-coA for the Lys-coA binding pocket of both CBP and p300. We found that both drugs cause large-scale changes in the transcriptome of HCT116 colon cancer cells and PANC1 pancreatic cancer cells and reverse some tumor-specific changes in gene expression. Interestingly, although the epigenetic inhibitors affect cell cycle pathways in both the colon and pancreatic cancer cell lines, the WNT signaling pathway was affected only in the colon cancer cells. Notably, WNT target genes were similarly downregulated after treatment of HCT116 with C646 as with ICG-001. CONCLUSION: Our results suggest that treatment with a general HAT inhibitor causes similar effects on the transcriptome as does treatment with a CBP-specific inhibitor and that epigenetic inhibition affects the WNT pathway in HCT116 cells and the cholesterol biosynthesis pathway in PANC1 cells.

4.
Genome Biol ; 13(9): R52, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22951069

ABSTRACT

BACKGROUND: The TCF7L2 transcription factor is linked to a variety of human diseases, including type 2 diabetes and cancer. One mechanism by which TCF7L2 could influence expression of genes involved in diverse diseases is by binding to distinct regulatory regions in different tissues. To test this hypothesis, we performed ChIP-seq for TCF7L2 in six human cell lines. RESULTS: We identified 116,000 non-redundant TCF7L2 binding sites, with only 1,864 sites common to the six cell lines. Using ChIP-seq, we showed that many genomic regions that are marked by both H3K4me1 and H3K27Ac are also bound by TCF7L2, suggesting that TCF7L2 plays a critical role in enhancer activity. Bioinformatic analysis of the cell type-specific TCF7L2 binding sites revealed enrichment for multiple transcription factors, including HNF4alpha and FOXA2 motifs in HepG2 cells and the GATA3 motif in MCF7 cells. ChIP-seq analysis revealed that TCF7L2 co-localizes with HNF4alpha and FOXA2 in HepG2 cells and with GATA3 in MCF7 cells. Interestingly, in MCF7 cells the TCF7L2 motif is enriched in most TCF7L2 sites but is not enriched in the sites bound by both GATA3 and TCF7L2. This analysis suggested that GATA3 might tether TCF7L2 to the genome at these sites. To test this hypothesis, we depleted GATA3 in MCF7 cells and showed that TCF7L2 binding was lost at a subset of sites. RNA-seq analysis suggested that TCF7L2 represses transcription when tethered to the genome via GATA3. CONCLUSIONS: Our studies demonstrate a novel relationship between GATA3 and TCF7L2, and reveal important insights into TCF7L2-mediated gene regulation.


Subject(s)
GATA3 Transcription Factor/metabolism , Genome, Human , Transcription Factor 7-Like 2 Protein/metabolism , Transcription, Genetic , Binding Sites , Cell Line, Tumor , Enhancer Elements, Genetic , GATA3 Transcription Factor/genetics , HEK293 Cells , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Nucleotide Motifs , Organ Specificity , Protein Binding , Transcription Factor 7-Like 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL