Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txae063, 2024.
Article in English | MEDLINE | ID: mdl-38689757

ABSTRACT

Due to its importance in animal feed, soybean meal has been extensively studied to optimize its use in livestock diets. Despite extensive research, the industry has not fully characterized specific areas of soybean processing such as the inclusion of soybean byproducts added back to soybean meal during processing. Soybean processing byproducts can encompass a large variety of materials including weeds and foreign material, soybean hulls, gums, soapstocks, lecithins, spent bleaching clays, and deodorizer distillates. Despite the potential for being added back to soybean meal when a crushing plant is integrated with an oil refinery, there is currently limited information on the composition of many of these soybean processing byproducts and their subsequent effects on soybean meal quality and animal performance. Therefore, there may be opportunities for a new area of research focused on soybean processing byproducts and their optimal use within the livestock feed industry. This review summarizes the current information on soybean byproducts with a focus on identifying the areas with the greatest potential for future research in swine and poultry nutrition.

2.
Transl Anim Sci ; 8: txad140, 2024.
Article in English | MEDLINE | ID: mdl-38221959

ABSTRACT

A total of 280 pigs (DNA 241 × 600, initially 10.4 ±â€…0.24 kg) were used in a 21-d study to determine the available P (aP) release curve for Sunphase HT phytase (Wuhan Sunhy Biology Co., Ltd., Wuhan, P.R. China) when fed diets with a high phytate concentration. On day 21 post-weaning, considered day 0 of the study, pigs were blocked by average pen body weight (BW) and randomly allotted to 1 of 7 dietary treatments with 5 pigs per pen and 8 pens per treatment. Dietary treatments were derived from a single basal diet, and ingredients including phytase, monocalcium P, limestone, and sand were added to create the treatment diets. Treatments included three diets with increasing (0.11%, 0.19%, and 0.27%) aP from monocalcium P, or four diets with increasing phytase (250, 500, 1,000, or 2,000 phytase unit (FTU)/kg) added to the diet formulated to 0.11% aP. All diets were corn-soybean meal-canola meal-based and were formulated to contain 1.24% SID Lys, a 1.10:1 total calcium-to-phosphorus ratio, and a calculated 0.32% phytate P. Prior to the beginning of the study, all pigs were fed a diet containing 0.11% aP from days 18 to 21 post-weaning. At the conclusion of the study, 1 pig, closest to the mean weight of each pen, was euthanized, and the right fibula, 10th rib, and metacarpal were collected to determine bone ash and density. After cleaning, bones were submerged in ultra-purified water under a vacuum for 4 h and then weighed to calculate the density (Archimedes principle). For bone ash, bones were processed using the non-defatted method. From days 0 to 21, increasing aP from monocalcium P increased (linear, P ≤ 0.014) average daily gain (ADG), gain-to-feed (G:F), and final BW. Pigs fed increasing phytase had increased (linear, P ≤ 0.045) ADG, final BW, and plasma inositol concentration as well as improved (quadratic, P = 0.023) G:F. For bone characteristics, pigs fed increasing aP from inorganic P had a linear improvement (P ≤ 0.019) in fibula bone ash weight and percentage bone ash, rib bone ash weight and bone density, and all metacarpal bone properties, with a quadratic response (P ≤ 0.030) for fibula bone density and rib percentage ash. Additionally, pigs fed increasing phytase had increased (P < 0.05) bone ash weight, percentage bone ash, and bone density in either a linear or quadratic fashion depending on the bone analyzed. The available P release curve generated for Sunphase HT phytase for percentage bone ash combining values from the right fibula, 10th rib, and metacarpal is aP release, % = (0.360 × FTU) ÷ (2,330.250 + FTU).

3.
Transl Anim Sci ; 8: txae049, 2024.
Article in English | MEDLINE | ID: mdl-38623565

ABSTRACT

Three studies were conducted evaluating the use of benzoic acid in swine diets. In experiment 1, 350 weanling barrows (DNA 200 × 400; initially 5.9 ±â€…0.04 kg) were allotted to one of the five dietary treatments with 14 pens per treatment. Diets were fed in three phases: phase 1 from weaning to day 10, phase 2 from days 10 to 18, and phase 3 from days 18 to 38. Treatment 1 contained no benzoic acid throughout all three phases (weaning to day 42). Treatment 2 included 0.50% benzoic acid throughout all three phases. Treatment 3 contained 0.50% benzoic acid in phases 1 and 2, and 0.25% benzoic acid in phase 3. Treatment 4 contained 0.50% benzoic acid in phases 1 and 2, and no benzoic acid in phase 3. Treatment 5 contained 0.50% benzoic acid in phase 1, 0.25% benzoic acid in phase 2, and no benzoic acid in phase 3. For the overall period, pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had greater (P < 0.05) average daily gain (average daily gain) than pigs fed no benzoic acid through all three phases, or pigs fed 0.50% in the first two phases and no benzoic acid in the final phase, with pigs fed the other treatments intermediate. Pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had improved (P < 0.05) gain-to-feed ratio (G:F) compared with pigs fed no benzoic acid throughout all three phases, pigs fed 0.50% in the first two phases and no benzoic acid in the third phase, or pigs fed 0.50%, 0.25%, and no benzoic acid, respectively. For experiment 2, a 101-d trial was conducted using two groups of 1,053 finishing pigs (2,106 total pigs; PIC 337 × 1,050; initially 33.3 ±â€…1.9 kg). Dietary treatments were corn-soybean meal-dried distillers grains with solubles-based with the addition of none, 0.25%, or 0.50% benzoic acid. Overall, pigs fed increasing benzoic acid had a tendency for increased average daily feed intake (linear, P = 0.083) but decreased G:F (linear, P < 0.05). In experiment 3, 2,162 finishing pigs (DNA 600 × PIC 1050; initially 31.4 ±â€…2.2 kg) were used in a 109-d trial. Dietary treatments were formulated with or without 0.25% benzoic acid. For the overall experimental period, pigs fed benzoic acid had increased (P < 0.05) G:F. In summary, feeding benzoic acid elicits improved growth performance when fed throughout the entire nursery period while improved G:F in growing-finishing pigs was observed in one experiment, but not in the other.

4.
Transl Anim Sci ; 8: txae085, 2024.
Article in English | MEDLINE | ID: mdl-38827160

ABSTRACT

Two studies were conducted to evaluate the effects of sodium diformate in swine diets. For Exp. 1, 360 barrows (DNA 200 × 400; initially 5.9 ±â€…0.06 kg) were used in a 38-d study. At weaning, pigs were randomly assigned to pens with five pigs per pen. Each pen was allocated to one of six treatments with 12 pens per treatment. Treatments were formulated to provide none, 0.40%, 0.60%, 0.80%, 1.00%, or 1.20% sodium diformate added at the expense of corn. Diets were fed in three phases: phase 1 from weaning to day 9, phase 2 from days 9 to 24, and phase 3 from days 24 to 38. From days 0 to 24 (phases 1 and 2), increasing sodium diformate increased (linear, P = 0.001) gain-to-feed (G:F). However, sodium diformate did not affect average daily gain (ADG) or average daily feed intake (ADFI). From days 24 to 38 (phase 3) and overall (days 0 to 38), there was no evidence of differences due to increasing sodium diformate for any growth response criteria. There was no evidence for differences in fecal dry matter (DM) on day 9. However, fecal DM decreased (linear, P < 0.05; quadratic, P = 0.097) as sodium diformate increased on day 24. In Exp. 2, 2,200 pigs (Duroc sire [PIC 800 or DNA 600] × PIC Camborough; initially 24.2 ±â€…0.30 kg) were used in a 117-d growth trial. Pens of pigs (25 pigs per pen) were randomly assigned to one of four treatments with 22 pens per treatment. Treatments were formulated with additions of none, 0.25%, 0.50%, or 0.75% sodium diformate. Diets were fed in six phases from 24 to 141 kg. For period 1 (days 0 to 32), ADFI tended to decrease then increase (quadratic, P = 0.081) with increasing sodium diformate, whereas G:F increased then decreased (quadratic, P < 0.001) with increasing sodium diformate. For period 2 (days 32 to 60), there was no evidence for differences in ADG or ADFI; however, there was a tendency for G:F to increase then decrease (quadratic, P = 0.093) with increasing sodium diformate. From days 60 to 93, increasing sodium diformate increased (linear, P < 0.01) ADG and ADFI. From days 93 to 117, increasing sodium diformate increased (linear, P < 0.05) ADG, ADFI, and G:F. Overall (days 0 to 117), pigs fed increasing sodium diformate had increased (linear, P < 0.01) ADG and a tendency for increased (linear, P = 0.075) ADFI; however, there was no evidence for differences in G:F. There were no treatment differences for any carcass characteristic. In summary, increasing sodium diformate may increase G:F in the early nursery and improve ADG after day 60 (approximately 82 kg) in the finishing period.

5.
Transl Anim Sci ; 7(1): txad090, 2023.
Article in English | MEDLINE | ID: mdl-37649646

ABSTRACT

A total of 320 pigs (Line 241 × 600, DNA, Columbus, NE; initially 11.9 ±â€…0.22 kg) were used in a 21-d growth study to determine the available P (aP) release curve for Smizyme TS G5 2,500 (Barentz, Woodbury, MN). At approximately 19 d of age, pigs were weaned, randomly allotted to pens, and fed common starter diets. Pigs were blocked by average pen body weight (BW) and randomly allotted to one of eight dietary treatments on day 18 postweaning, considered day 0 of the study. Dietary treatments were derived from a single basal diet and ingredients including phytase, monocalcium P, limestone, and sand were added to create the treatment diets. Treatments included three diets containing increasing inorganic P from monocalcium P (0.11%, 0.20%, and 0.28% aP), or five diets with increasing phytase (500, 1,000, 1,500, 2,000, or 2,500 FTU/kg) added to the diet containing 0.11% aP. All diets were corn-soybean meal-canola meal-based and were formulated to contain 1.24% standardized ileal digestibility Lys, 0.30% phytate P, and an analyzed Ca:P ratio of 1.10:1. Prior to the beginning of the study, all pigs were fed a diet containing 0.11% aP for a 2-d period (days 16 to 18 postweaning). At the conclusion of the study, one pig, closest to the mean weight of each pen, was euthanized and the right fibula, rib, and metacarpal were collected to determine bone ash, density, and total bone P. Bones were weighed while suspended in a vessel of water and the weights used to calculate bone density (Archimedes' principle). For bone ash, bones were processed using the non-defatted method. For the overall experimental period, pigs fed increasing inorganic P had increased (quadratic, P ≤ 0.033) average daily gain (ADG), average daily feed intake (ADFI), and final BW and a tendency for increased (quadratic, P ≤ 0.090) gain:feed ratio (G:F). Pigs fed increasing phytase had increased (quadratic, P ≤ 0.004) ADG, G:F, and final BW and increased (linear, P = 0.019) ADFI. For fibula, rib, and metacarpal characteristics, pigs fed increasing aP from inorganic P had increased (linear, P < 0.001) bone ash weight, percentage bone ash, bone density, and bone P concentration. Additionally, pigs fed increasing phytase had increased (linear or quadratic, P < 0.05) bone ash weight, percentage bone ash, bone density, and bone P. TheaP release curve generated for Smizyme TS G5 2,500 for percentage bone ash using data generated from all three bones is aP = (0.228 × FTU/kg) ÷ (998.065 + FTU/kg).

6.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35262699

ABSTRACT

Feeding growing-finishing pigs supplemental fat is a common practice in the swine industry and can result in improved feed efficiency and reduced feed intake; however, dietary lipids also play a key role in determining pork composition. The objectives of the current study were to evaluate the effects of feeding graded levels of high oleic soybean oil (HOSO) on growth performance and carcass characteristics. A total of 288 pigs raised in two separate blocks (144 pigs each) were assigned to one of four diets containing either 25% dried distiller's grains with solubles (DDGS), 2% high oleic soybean oil (HOSO2), 4% high oleic soybean oil (HOSO4), or 6% high oleic soybean oil (HOSO6). Pigs were housed 4 per pen and fed for 98 d using a 3-phase feeding system. Pigs were individually weighed and feed intake was recorded throughout the trial to calculate average daily feed intake (ADFI) and gain to feed ratio (G:F). A total of 144 pigs were transported to the University of Illinois Meat Science Laboratory and fabricated into primal and subprimal cuts to calculate carcass cutting yields. Differences in growth performance were observed, with pigs fed the DDGS treatment exhibiting greater (P ≤ 0.01) overall ADFI consuming 0.21, 0.18, and 0.28 kg/d more than HOSO2, HOSO4, and HOSO6 diets, respectively. Pigs fed the HOSO6 diet had greater (P ≤ 0.03) overall G:F than pigs fed DDGS and HOSO2 diets but did not differ (P = 0.12) from pigs fed HOSO4. Furthermore, differences in carcass traits were observed. Hot carcass weight was increased (P ≤ 0.03) in pigs fed the HOSO6 diet compared with pigs fed the DDGS and HOSO2 diets, while pigs fed HOSO4 did not differ (P > 0.05) from either extreme. Additionally, pigs fed HOSO4 and HOSO6 produced fatter (P ≤ 0.01) carcasses with reduced (P ≤ 0.01) standardized fat-free lean. Minimal differences were observed in primal weights expressed as a percentage of chilled side including bone-in Boston butt, trimmed loin, and trimmed ham with primal weights decreasing with increasing inclusion of dietary HOSO. Overall, pigs fed HOSO2 had reduced ADFI with similar backfat thickness and standardized fat-free lean compared with pigs fed the DDGS treatment. However, pigs fed HOSO 4% and 6% not only had improvements in ADFI and G:F but also had increased backfat thickness, which resulted in reductions in standardized fat-free lean and primal weights expressed as a percentage of chilled side weight.


Feeding pigs supplemental fat to increase caloric density is a common practice in the swine industry and can result in improved feed efficiency. However, high oleic soybean oil (HOSO), a relatively new feed ingredient, has not been extensively researched in pig diets. HOSO differs from conventional soybean oil in that it contains an increased proportion of oleic acid, a monounsaturated fatty acid. Therefore, our goal was to investigate the use of HOSO in the diets of pigs in the weeks leading up to marketing. A total of 288 pigs were fed one of four diets that differed in their source of fat. One diet contained 25% dried distiller's grains with solubles (DDGS), while the other three had graded levels of HOSO (2%, 4%, or 6%). Pigs were fed diets for the last 14 wk leading up to slaughter. Pigs fed the highest level of HOSO grew more efficiently and were heavier than those fed the diet containing DDGS. However, pigs fed 6% HOSO were also fatter and yielded a reduced percentage of boneless meat cuts than those fed DDGS.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Adipose Tissue/metabolism , Animal Feed/analysis , Animals , Body Composition , Diet/veterinary , Soybean Oil/pharmacology , Swine , Zea mays
7.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36029478

ABSTRACT

Feeding growing-finishing pigs supplemental fat is a common practice in the swine industry and can result in improved feed efficiency and reduced feed intake; however, dietary lipids also play a key role in determining pork quality. Objectives of the study were to evaluate the effects of feeding graded levels of high oleic soybean oil (HOSO) on loin and belly quality. A total of 288 pig raised in two separate blocks (144 pigs each) were assigned to one of four diets containing either 25% dried distiller's grains with solubles (DDGS), 2% high oleic soybean oil (HOSO2), 4% high oleic soybean oil (HOSO4), or 6% high oleic soybean oil (HOSO6). Following the conclusion of the feeding trial, 144 pigs were slaughtered at the University of Illinois Meat Science Laboratory. Following fabrication, loins were collected for the evaluation of fresh quality measurements and color stability. Belly quality and fatty acid composition were evaluated using skin-on natural fall bellies. There were no differences (P ≥ 0.11) in pH, visual color, lightness (L*), drip loss, or WBSF among dietary treatments. However, visual marbling was increased (P ≤ 0.01) in loin chops from pigs fed HOSO4 and HOSO6 treatments compared with chops from pigs fed the DDGS dietary treatment. Additionally, loin chops were more red (a*) (P ≤ 0.01) from pigs fed HOSO diets when compared with pigs fed DDGS. Extractable lipid was decreased (P ≤ 0.01) in fresh loin chops from pigs fed DDGS and HOSO2 diets compared with pigs fed HOSO6. There were no differences (P ≥ 0.75) in trained sensory tenderness, juiciness, or flavor for loin chops from pigs fed different dietary treatments. Pork fatty acid composition was altered by dietary HOSO inclusion, with pigs fed DDGS having (P ≤ 0.01) the greatest concentration of C16:0 and was decreased with increasing levels of HOSO inclusion. Inversely, the percentage of C18:1n-9 was least (P ≤ 0.01) in pigs fed DDGS and increased with increasing levels of HOSO inclusion. Pigs fed DDGS produced wider (P ≤ 0.03) and thinner (P ≤ 0.04) bellies with reduced flop distance compared with pigs fed HOSO diets. Overall, HOSO diets did not negatively affect fresh loin quality or sensory traits of loin chops. Furthermore, feeding HOSO to swine resulted in bellies containing greater percentages of oleic acid and reduced percentages of palmitic and linoleic acid.


Feeding pigs supplemental fat to increase caloric density is a common practice in the swine industry. However, dietary fats are also a key determinant of pork fat composition and may influence product quality. High oleic soybean oil (HOSO), a relatively new feed ingredient, differs from conventional soybean oil in that it contains an increased proportion of oleic acid, a monounsaturated fatty acid. However, HOSO has not been extensively researched in pig diets. Therefore, our goal was to investigate the use of dietary HOSO on fresh belly and loin quality. A total of 144 pigs, fed one of four diets that differed in fat source, were slaughtered at the University of Illinois Meat Science Laboratory. One diet contained 25% dried distiller's grains with solubles (DDGS), while the other three had graded levels of high oleic soybean oil (2%, 4%, or 6%). Pigs were fed diets for the last 14 weeks leading up to slaughter. Pigs fed HOSO produced thicker, firmer bellies and fat tissue containing a decreased proportion of polyunsaturated fatty acids compared with DDGS-fed pigs. Feeding HOSO had little impact on fresh loin quality and palatability compared with feeding an industry-reference diet containing DDGS.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Adipose Tissue , Animal Feed/analysis , Animals , Body Composition , Diet/veterinary , Edible Grain , Fatty Acids/pharmacology , Linoleic Acid/pharmacology , Oleic Acid/pharmacology , Soybean Oil/pharmacology , Swine , Zea mays
8.
Transl Anim Sci ; 4(3): txaa154, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32904975

ABSTRACT

The objective was to determine the change in extractable lipid concentration during cooking of boneless pork chops to different endpoint temperatures. Pork loins (152 total) were used and three consecutive chops were cut from each loin. Chop 1 was evaluated raw (not cooked) for intramuscular fat (IMF) percentage. Raw IMF percentages were used to categorize the remaining two chops, from each loin, into low, average, and high marbling bins. The low bin included ≤3% IMF, the average bin included 3-4% IMF, and the high bin included ≥4% IMF. Chop 2 was cooked to 63 °C and chop 3 was cooked to 71 °C to evaluate cook loss, Warner-Bratzler shear force (WBSF), and IMF percentage. When cooked to either 63 or 71 °C, high IMF chops maintained greater (P < 0.001) IMF percentage than average and low IMF chops. Additionally, average IMF chops maintained greater (P < 0.001) IMF percentage than low chops, regardless of endpoint cooking temperature. The three marbling categories did not differ in cook loss (P = 0.28) or WBSF (P = 0.23) when chops were cooked to either 63 or 71 °C. However, both WBSF (2.76 kg) and cook loss (18.72%) were decreased (P < 0.001) in chops cooked to 63 °C compared with chops cooked to 71 °C (3.08 kg, 23.45%). Overall, differences in IMF percentages persisted even after cooking. Furthermore, IMF percentage of pork chops did not affect tenderness.

SELECTION OF CITATIONS
SEARCH DETAIL