Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056344

ABSTRACT

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Subject(s)
Neoplasms/genetics , Adult , Child , Cluster Analysis , DNA Polymerase II/genetics , DNA Polymerase III/genetics , DNA Replication , Humans , Mutation , Neoplasms/classification , Neoplasms/pathology , Neoplasms/therapy , Poly-ADP-Ribose Binding Proteins/genetics
2.
Am J Hum Genet ; 99(6): 1359-1367, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27866705

ABSTRACT

Epileptic encephalopathies are a catastrophic group of epilepsies characterized by refractory seizures and cognitive arrest, often resulting from abnormal brain development. Here, we have identified an epileptic encephalopathy additionally featuring cerebral calcifications and coarse facial features caused by recessive loss-of-function mutations in DENND5A. DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rabs, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development. Mechanistically, these changes appear to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Thus, we have identified a link between a DENN domain protein and neuronal development, dysfunction of which is responsible for a form of epileptic encephalopathy.


Subject(s)
Brain/pathology , Epilepsy/genetics , Mutation , rab GTP-Binding Proteins/genetics , Adolescent , Animals , Child , Consanguinity , Female , Guanine Nucleotide Exchange Factors , Humans , Male , Neurons/metabolism , PC12 Cells , Pedigree , Rats
3.
Cancer Discov ; 11(6): 1454-1467, 2021 06.
Article in English | MEDLINE | ID: mdl-33563663

ABSTRACT

The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Genetic Predisposition to Disease , Glioma/drug therapy , Mitogen-Activated Protein Kinase Kinases/genetics , Protein Kinase Inhibitors/therapeutic use , Adult , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Child , Colorectal Neoplasms/genetics , Female , Glioma/genetics , Global Health , Humans , Male , Mice , Mice, Inbred NOD , Mutation
4.
Cancer Discov ; 11(5): 1176-1191, 2021 05.
Article in English | MEDLINE | ID: mdl-33355208

ABSTRACT

Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Cell Transformation, Neoplastic , DNA Mismatch Repair , DNA-Directed DNA Polymerase , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Neoplasms/genetics , Humans , Exome Sequencing
5.
J Clin Oncol ; 39(25): 2779-2790, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33945292

ABSTRACT

PURPOSE: Constitutional mismatch repair deficiency syndrome (CMMRD) is a lethal cancer predisposition syndrome characterized by early-onset synchronous and metachronous multiorgan tumors. We designed a surveillance protocol for early tumor detection in these individuals. PATIENTS AND METHODS: Data were collected from patients with confirmed CMMRD who were registered in the International Replication Repair Deficiency Consortium. Tumor spectrum, efficacy of the surveillance protocol, and malignant transformation of low-grade lesions were examined for the entire cohort. Survival outcomes were analyzed for patients followed prospectively from the time of surveillance implementation. RESULTS: A total of 193 malignant tumors in 110 patients were identified. Median age of first cancer diagnosis was 9.2 years (range: 1.7-39.5 years). For patients undergoing surveillance, all GI and other solid tumors, and 75% of brain cancers were detected asymptomatically. By contrast, only 16% of hematologic malignancies were detected asymptomatically (P < .001). Eighty-nine patients were followed prospectively and used for survival analysis. Five-year overall survival (OS) was 90% (95% CI, 78.6 to 100) and 50% (95% CI, 39.2 to 63.7) when cancer was detected asymptomatically and symptomatically, respectively (P = .001). Patient outcome measured by adherence to the surveillance protocol revealed 4-year OS of 79% (95% CI, 54.8 to 90.9) for patients undergoing full surveillance, 55% (95% CI, 28.5 to 74.5) for partial surveillance, and 15% (95% CI, 5.2 to 28.8) for those not under surveillance (P < .0001). Of the 64 low-grade tumors detected, the cumulative likelihood of transformation from low-to high-grade was 81% for GI cancers within 8 years and 100% for gliomas in 6 years. CONCLUSION: Surveillance and early cancer detection are associated with improved OS for individuals with CMMRD.


Subject(s)
Brain Neoplasms/mortality , Colorectal Neoplasms/mortality , DNA Mismatch Repair , DNA Repair Enzymes/deficiency , Early Detection of Cancer/methods , Neoplastic Syndromes, Hereditary/mortality , Adolescent , Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/epidemiology , Brain Neoplasms/metabolism , Child , Child, Preschool , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/metabolism , Female , Follow-Up Studies , Humans , Male , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/epidemiology , Neoplastic Syndromes, Hereditary/metabolism , Population Surveillance , Prognosis , Prospective Studies , Survival Rate , United States/epidemiology , Young Adult
6.
Cancer Res ; 80(24): 5606-5618, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32938641

ABSTRACT

POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. SIGNIFICANCE: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy.See related commentary by Wisdom and Kirsch p. 5459.


Subject(s)
DNA Polymerase II , Neoplasms , Animals , DNA Polymerase II/genetics , Humans , Immune Checkpoint Inhibitors , Mice , Mutation , Neoplasms/genetics , Poly-ADP-Ribose Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL