Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Anal Chem ; 93(5): 2888-2897, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33476126

ABSTRACT

In this work, a new high-volume, continuous particle separation device that separates based upon size and charge is described. Two continuous flow-electrical-split-flow lateral transport thin (Fl-El-SPLITT) device architectures (a platinum electrode on a porous membrane and a porous graphite electrode under a membrane) were developed and shown to improve particle separations over a purely electrical-SPLITT device. The graphite FL-El-SPLITT device architecture achieved the best separation of approximately 60% of small (28 nm) vs large (1000 nm) polystyrene particles. Fl-El-SPLITT (platinum) achieved a 75% separation on a single pass using these same particles. Fl-El-SPLITT (platinum) achieved a moderate 26% continuous separation of U87 glioma cell-derived small extracellular vesicles (EVs) from medium EVs. Control parameter testing showed that El-SPLITT continuously directed particle motility within a channel to exit a selected port based upon the applied voltage using either direct current or alternating current. The transition from one port to the other was dependent upon the voltage applied. Both large and small polystyrene particles transitioned together rather than separating at each of the applied voltages. These data present the first ever validation of El-SPLITT in continuous versus batch format. The Fl-El-SPLITT device architecture, monitoring, and electrical and fluid interfacing systems are described in detail for the first time. Capabilities afforded to the system by the flow addition include enhanced particle separation as well as the ability to filter out small particles or desalinate fluids. High-throughput continuous separations based upon electrophoretic mobility will be streamlined by this new technique that combines electrical and flow fields into a single device.


Subject(s)
Chemical Fractionation , Electricity , Particle Size , Physical Phenomena
2.
Analyst ; 146(10): 3368-3377, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33871507

ABSTRACT

Immotile and rare sperm isolation from a complex cell background is an essential process for infertility treatment. The traditional sperm collection process from a biopsy sample requires long, tedious searches, yet still results in low sperm retrieval. In this work, a high recovery, high throughput sperm separation process is proposed for the clinical biopsy sperm retrieval process. It is found that sperm have different focusing positions compared with non-sperm cells in the inertial flow, which is explained by a sperm alignment phenomenon. Separation in the spiral channel device results in a 95.6% sperm recovery in which 87.4% of non-sperm cells get removed. Rare sperm isolation from a clinical biopsy sample is performed with the current approach. The chance of finding sperm is shown to increase 8.2 fold in the treated samples. The achieved results highly support this method being used for the development of a rapid biopsy sperm sorting process. In addition, the mechanism was proposed and can be applied for the high-efficiency separation of non-spherical particles in general.


Subject(s)
Spermatozoa , Biopsy , Cell Separation , Male
3.
Anal Bioanal Chem ; 413(1): 49-71, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33073312

ABSTRACT

The unprecedented global pandemic known as SARS-CoV-2 has exercised to its limits nearly all aspects of modern viral diagnostics. In doing so, it has illuminated both the advantages and limitations of current technologies. Tremendous effort has been put forth to expand our capacity to diagnose this deadly virus. In this work, we put forth key observations in the functionality of current methods for SARS-CoV-2 diagnostic testing. These methods include nucleic acid amplification-, CRISPR-, sequencing-, antigen-, and antibody-based detection methods. Additionally, we include analysis of equally critical aspects of COVID-19 diagnostics, including sample collection and preparation, testing models, and commercial response. We emphasize the integrated nature of assays, wherein issues in sample collection and preparation could impact the overall performance in a clinical setting.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Pandemics , SARS-CoV-2/isolation & purification , COVID-19/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , RNA, Viral/analysis , SARS-CoV-2/genetics , Specimen Handling/methods
4.
Anal Chem ; 92(14): 9866-9876, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32571024

ABSTRACT

Although many properties for small extracellular vesicles (sEVs, formerly termed "exosomes") isolated at ∼100 000g are known, a wide range of values are reported for their electrophoretic mobility (EM) measurements. This paper reports for the first time the effect of dilution on the EM of U87 glioblastoma cell-derived and plasma-derived sEVs and medium size EVs (mEVs, commonly termed "oncosomes") preisolated by differential centrifugation. Furthermore, the effect of resalting on the EM of sEVs and mEVs was evaluated. The EM of U87 sEVs and U87 mEVs showed an increase as the salt concentration decreased to 0.005% of the initial salt concentration. However, for the plasma sEVs and plasma mEVs, the electrophoretic mobility increased as the salt concentration decreased to 0.01% of the initial salt concentration and then increased to its initial value when the salt concentration decreased to 0.005% of the initial salt concentration. For both U87 and plasma sEVs and mEVs, the EM remained almost constant when the concentration of the particles changed and the salt concentration was kept the same as its initial value. This indicates that the EM of EVs is only a function of the salt concentration of the buffer and is independent of the concentration of the particles. The sEVs and mEVs were separated with cyclical ElFFF for the first time. The results indicate that ElFFF was able to fractionate the EVs, and a crescent-shaped trend was found for the retention time when the applied AC voltage was altered (increased).


Subject(s)
Centrifugation/methods , Chemical Fractionation/methods , Electrochemical Techniques , Extracellular Vesicles/chemistry , Glioblastoma/chemistry , Cell Line, Tumor , Humans
5.
Anal Bioanal Chem ; 412(7): 1563-1572, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31938845

ABSTRACT

Virus-like particles (VLPs) are widely used in medicine, but can be difficult to characterize and isolate from aggregates. In this research, primarily cyclical electrical field-flow fractionation (CyElFFF) coupled with multi-angle light scattering (MALS), and dynamic light scattering (DLS) detectors, was used for the first time to perform size and electrical characterization of three different types of Q beta bacteriophage virus-like particles (VLPs): a blank Q beta bacteriophage which is denoted as VLP and two conjugated ones with different peptides. The CyElFFF results were verified with transmission electron microscopy (TEM). Asymmetrical flow field-flow fractionation (AF4) coupled with MALS was also applied using conditions similar to those used in the CyElFFF experiments, and the results of the two techniques were compared to each other. Using these techniques, the size and electrophoretic characteristics of the fractionated VLPs in CyElFFF were obtained. The results indicate that CyElFFF can be used to obtain a clear distribution of electrophoretic mobilities for each type of VLP. Accordingly, CyElFFF was able to differentially retain and isolate VLPs with high surface electric charge/electrophoretic mobility from the ones with low electric charge/electrophoretic mobility. Regarding the size characterization, the size distribution of the eluted VLPs was obtained using both techniques. CyElFFF was able to identify subpopulations that did not appear in the AF4 results by generating a shoulder peak, whereas AF4 produced a single peak. Different size characteristics of the VLPs appearing in the shoulder peak and the main peak indicate that CyElFFF was able to isolate aggregated VLPs from the monomers partially. Graphical abstract.


Subject(s)
Bacteriophages/isolation & purification , Electricity , Fractionation, Field Flow/methods , Virion/metabolism , Amino Acid Sequence , Bacteriophages/metabolism , Electrophoresis, Capillary , Viral Proteins/chemistry
6.
Am J Physiol Endocrinol Metab ; 316(1): E43-E53, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30398905

ABSTRACT

Blood or biopsies are often used to characterize metabolites that are modulated by exercising muscle. However, blood has inputs derived from multiple tissues, biopsies cannot discriminate between secreted and intracellular metabolites, and their invasive nature is challenging for frequent collections in sensitive populations (e.g., children and pregnant women). Thus, minimally invasive approaches to interstitial fluid (IF) metabolomics would be valuable. A catheter was designed to collect IF from the gastrocnemius muscle of acutely anesthetized adult male rats at rest or immediately following 20 min of exercise (~60% of maximal O2 uptake). Nontargeted, gas chromatography-time-of-flight mass spectrometry analysis was used to detect 299 metabolites, including nonannotated metabolites, sugars, fatty acids, amino acids, and purine metabolites and derivatives. Just 43% of all detected metabolites were common to IF and blood plasma, and only 20% of exercise-modified metabolites were shared in both pools, highlighting that the blood does not fully reflect the metabolic outcomes in muscle. Notable exercise patterns included increased IF amino acids (except leucine and isoleucine), increased α-ketoglutarate and citrate (which may reflect tricarboxylic acid cataplerosis or shifts in nonmitochondrial pathways), and higher concentration of the signaling lipid oleamide. A preliminary study of human muscle IF was conducted using a 20-kDa microdialysis catheter placed in the vastus lateralis of five healthy adults at rest and during exercise (65% of estimated maximal heart rate). Approximately 70% of commonly detected metabolites discriminating rest vs. exercise in rats were also changed in exercising humans. Interstitium metabolomics may aid in the identification of molecules that signal muscle work (e.g., exertion and fatigue) and muscle health.


Subject(s)
Exercise , Extracellular Fluid/chemistry , Metabolomics , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Rest , Adult , Amino Acids/metabolism , Animals , Citric Acid/metabolism , Fatty Acids/metabolism , Female , Gas Chromatography-Mass Spectrometry , Humans , Ketoglutaric Acids/metabolism , Male , Microdialysis , Middle Aged , Oleic Acids/metabolism , Rats , Young Adult
7.
Anal Chem ; 90(17): 10450-10456, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30071717

ABSTRACT

Transparent surfaces within microfluidic devices are essential for accurate quantification of chemical, biological, and mechanical interactions. Here, we report how to create low-cost, rapid 3D-printed microfluidic devices that are optically free from artifacts and have transparent surfaces suitable for visualizing a variety of fluid phenomenon. The methodology described here can be used for creating high-pressure microfluidic systems (significantly higher than PDMS-glass bonding). We develop methods for annealing Poly-Lactic Acid (PLA) microfluidic devices demonstrating heat resistance typically not achievable with other plastic materials. We show DNA melting and subsequent fluorescent imaging analysis, opening the door to other high-temperature applications. The FDM techniques demonstrated here allow for fabrication of microfluidic devices for precise visualization of interfacial dynamics, whether mixing between two laminar streams or droplet tracking. In addition to these characterizations, we include a printer troubleshooting guide and printing recipes for device fabrication to facilitate FDM printing for microfluidic device development.


Subject(s)
Hot Temperature , Lab-On-A-Chip Devices , Pressure , Printing, Three-Dimensional , Diffusion of Innovation , Optical Imaging , Polyesters/chemistry
8.
Anal Chem ; 90(12): 7190-7196, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29781598

ABSTRACT

A microfluidic PCR device was developed that enables DNA amplification at speeds as fast as 2 s/cycle, with concurrent detection and amplification. Two targets were amplified from human genomic DNA. By observing the fluorescence emitted by a DNA dye while the sample is amplified, it is possible to obtain both qPCR and spatial melting information about the amplified product. The speed and integration of the device make it conducive to while-you-wait diagnostic tests that do not require post-PCR analysis.


Subject(s)
DNA/genetics , Microfluidic Analytical Techniques , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , Temperature , DNA/analysis , Fluorescence , Humans , Optical Imaging
9.
Anal Chem ; 90(21): 12783-12790, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30346136

ABSTRACT

The influence of buffer substitution and dilution effects on exosome size and electrophoretic mobility were shown for the first time. Cyclical electrical field flow fractionation (Cy-El-FFF) in various substituted fluids was applied to exosomes and other particles. Tested carrier fluids of deionized (DI) water, 1× phosphate buffered saline (PBS), 0.308 M trehalose, and 2% isopropyl alcohol (IPA) influenced Cy-El-FFF-mediated isolation of A375 melanoma exosomes. All fractograms revealed a crescent-shaped trend in retention times with increasing voltage with the maximum retention time at ∼1.3 V AC. A375 melanoma exosome recovery was approximately 70-80% after each buffer substitution, and recovery was independent of whether the sample was substituted into 1× PBS or DI water. Exosome dilution in deionized water produced a U-shaped dependence on electrophoretic mobility. The effect of dilution using 1× PBS buffer revealed a very gradual change in electrophoretic mobility of exosomes from ∼-1.6 to -0.1 µm cm/s V, as exosome concentration was decreased. This differed from the use of DI water, where a large change from ∼-5.5 to -0.1 µm cm/s V over the same dilution range was observed. Fractograms of separated A375 melanoma exosomes in two substituted low-ionic-strength buffers were compared with synthetic particle fractograms. Overall, the ability of Cy-El-FFF to separate exosomes based on their size and charge is a highly promising, label-free approach to initially catalogue and purify exosome subtypes for biobanking as well as to enable further exosome subtype interrogations.


Subject(s)
Exosomes/chemistry , Solvents/chemistry , 2-Propanol/chemistry , Buffers , Cell Line, Tumor , Fractionation, Field Flow/methods , Humans , Nanoparticles/chemistry , Osmolar Concentration , Phosphates/chemistry , Polystyrenes/chemistry , Saline Solution/chemistry , Trehalose/chemistry , Water/chemistry
10.
Sensors (Basel) ; 18(5)2018 May 10.
Article in English | MEDLINE | ID: mdl-29747467

ABSTRACT

The availability of clean drinking water is a significant problem worldwide. Many technologies exist for purifying drinking water, however, many of these methods require chemicals or use simple methods, such as boiling and filtering, which may or may not be effective in removing waterborne pathogens. Present methods for detecting pathogens in point-of-use (POU) sterilized water are typically time prohibitive or have limited ability differentiating between active and inactive cells. This work describes a rapid electrochemical sensor to differentially detect the presence of active Escherichia coli (E. coli) O157:H7 in samples that have been partially or completely sterilized using a new POU electrocatalytic water purification technology based on superradicals generated by defect laden titania (TiO2) nanotubes. The sensor was also used to detect pathogens sterilized by UV-C radiation for a comparison of different modes of cell death. The sensor utilizes immunomagnetic bead separation to isolate active bacteria by forming a sandwich assay comprised of antibody functionalized secondary magnetic beads, E. coli O157:H7, and polyguanine (polyG) oligonucleotide functionalized secondary polystyrene beads as an electrochemical tag. The assay is formed by the attachment of antibodies to active receptors on the membrane of E. coli, allowing the sensor to differentially detect viable cells. Ultravioloet (UV)-C radiation and an electrocatalytic reactor (ER) with integrated defect-laden titania nanotubes were used to examine the sensors’ performance in detecting sterilized cells under different modes of cell death. Plate counts and flow cytometry were used to quantify disinfection efficacy and cell damage. It was found that the ER treatments shredded the bacteria into multiple fragments, while UV-C treatments inactivated the bacteria but left the cell membrane mostly intact.

11.
Anal Chem ; 88(3): 1794-803, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26708115

ABSTRACT

A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 µM). These concentrations are far from the isotonic condition of PBS (∼ 150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275-299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.


Subject(s)
2-Propanol/chemistry , Fractionation, Field Flow , Phosphates/chemistry , Sodium Chloride/chemistry , Sucrose/chemistry , Electricity , Electrodes , Ions/chemistry
12.
Biomed Microdevices ; 18(4): 62, 2016 08.
Article in English | MEDLINE | ID: mdl-27393216

ABSTRACT

Polymerase Chain Reaction (PCR) is used to amplify a specific segment of DNA through a thermal cycling protocol. The PCR industry is shifting its focus away from macro-scale systems and towards micro-scale devices because: micro-scale sample sizes require less blood from patients, total reaction times are on the order of minutes opposed to hours, and there are cost advantages as many microfluidic devices are manufactured from inexpensive polymers. Some of the fastest PCR devices use continuous flow, but they have all been built of silicon or glass to allow sufficient heat transfer. This article presents a disposable polycarbonate (PC) device that is capable of achieving real-time, continuous flow PCR in a completely disposable polymer device in less than 13 minutes by thermally cycling the sample through an established temperature gradient in a serpentine channel. The desired temperature gradient was determined through simulations and validated by experiments which showed that PCR was achieved. Practical demonstration included amplification of foot-and-mouth disease virus (FMDV) derived cDNA.


Subject(s)
Equipment Design , Polymerase Chain Reaction/instrumentation , Computer Simulation , DNA , Glass/chemistry , Hot Temperature , Microfluidic Analytical Techniques , Polycarboxylate Cement/chemistry , Polymers/chemistry , Silicon/chemistry
13.
Anal Bioanal Chem ; 408(3): 855-63, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26612733

ABSTRACT

The potential of biased cyclical electrical field-flow fractionation (BCyElFFF), which applies the positive cycle voltage longer than the negative cycle voltage, for characterization of submicron particles, was investigated. Parameters affecting separation and retention such as voltage, frequency, and duty cycle were examined. The results suggest that the separation mechanism in BCyElFFF in many cases is more related to the size of particles, as is the case with normal ElFFF, in the studied conditions, than the electrophoretic mobility, which is what the theory predicts for CyElFFF. However, better resolution was obtained when separating using BCyElFFF mode than when using normal CyElFFF. BCyElFFF was able to demonstrate simultaneous baseline separations of a mixture of 0.04-, 0.1-, and 0.2-µm particles and near separation of 0.5-µm particles. This study has shown the applicability of BCyElFFF for separation and characterization of submicron particles greater than 0.1-µm in size, which had not been demonstrated previously. The separation and retention results suggest that for particles of this size, retention is based more on particle size than on electrophoretic mobility, which is contrary to existing theory for CyElFFF.


Subject(s)
Fractionation, Field Flow/methods , Nanoparticles/chemistry , Particle Size
14.
Biomed Microdevices ; 17(2): 43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25773537

ABSTRACT

This paper introduces an innovative method for genotyping 1-2 days old zebrafish embryos, without sacrificing the life/health of the embryos. The method utilizes microfluidic technology to extract and collect a small amount of genetic material from the chorionic fluid or fin tissue of the embryo. Then, using conventional DNA extraction, PCR amplification, and high resolution melt analysis with fluorescent DNA detection techniques, the embryo is genotyped. The chorionic fluid approach was successful 78% of the time while the fin clipping method was successful 100% of the time. Chorionic fluid was shown to only contain DNA from the embryo and not from the mother. These results suggest a novel method to genotype zebrafish embryos that can facilitate high-throughput screening, while maintaining 100% viability of the embryo.


Subject(s)
Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Zebrafish/embryology , Zebrafish/genetics , Animals , Animals, Genetically Modified , Chorion , Embryo, Nonmammalian , Equipment Design , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Polymerase Chain Reaction/methods
15.
Sensors (Basel) ; 15(5): 12034-52, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26007743

ABSTRACT

In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 108 guanine tags per secondary bead (7.5 x 106 biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the protocol for detection of E. coli O157:H7 seeded in waste water effluent samples.


Subject(s)
Bacteriological Techniques/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Escherichia coli O157/isolation & purification , Guanine/chemistry , Immunomagnetic Separation/methods , Escherichia coli O157/cytology
16.
Biomed Microdevices ; 16(4): 639-44, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24781884

ABSTRACT

Rare variant enrichment and quantification was achieved by allele-specific, competitive blocker, digital PCR for aiming to provide a noninvasive method for detecting rare DNA variants from circulating cells. The allele-specific blocking chemistry improves sensitivity and lowers assay cost over previously described digital PCR methods while the instrumentation allowed for rapid thermal cycling for faster turnaround time. Because the digital counting of the amplified variants occurs in the presence of many wild-type templates in each well, the method is called "quasi-digital PCR". A spinning disk was used to separate samples into 1000 wells, followed by rapid-cycle, allele-specific amplification in the presence of a molecular beacon that serves as both a blocker and digital indicator. Monte Carlo simulations gave similar results to Poisson distribution statistics for mean number of template molecules and provided an upper and lower bound at a specified confidence level and accounted for input DNA concentration variation. A 111 bp genomic DNA fragment including the BRAF p.V600E mutation (c.T1799A) was amplified with quasi-digital PCR using cycle times of 23 s. Dilution series confirmed that wild-type amplification was suppressed and that the sensitivity for the mutant allele was <0.01 % (43 mutant alleles amongst 500,000 wild-type alleles). The Monte Carlo method presented here is publically available on the internet and can calculate target concentration given digital data or predict digital data given target concentration.


Subject(s)
DNA Copy Number Variations , DNA Primers/genetics , DNA/isolation & purification , Polymerase Chain Reaction/methods , Alleles , Computer Simulation , DNA/genetics , Gene Library , Genomics/methods , Humans , Monte Carlo Method , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
17.
Analyst ; 139(6): 1303-26, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24479125

ABSTRACT

Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.


Subject(s)
Microtechnology/instrumentation , Microtechnology/methods , Protein Array Analysis/instrumentation , Equipment Design , Microfluidics/instrumentation , Microfluidics/methods , Printing/instrumentation , Printing/methods
18.
Anal Bioanal Chem ; 406(30): 7855-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25084738

ABSTRACT

Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.


Subject(s)
Exosomes/pathology , Fractionation, Field Flow/methods , Melanoma/pathology , Animals , Cell Line, Tumor , Light , Mice , Microscopy, Electron, Transmission/methods , Scattering, Radiation , Spectrophotometry, Ultraviolet/methods
19.
Anal Chem ; 85(23): 11225-32, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24180262

ABSTRACT

Cyclical electrical field flow fractionation (CyElFFF) is a technique for characterizing and separating nanoparticles based on their size and charge using cyclical electric fields. The high diffusion rate of nanoparticles has prevented CyElFFF from being applicable to particles smaller than 100 nm. In this work, the diffusion challenges associated with nanoparticles was resolved using biased cyclical electric fields. This new method, biased cyclical electrical field flow fractionation (BCyElFFF), achieves baseline separation of 15 and 40 nm gold nanoparticles. Theoretical considerations show that the optimal resolution is achieved when the applied bias yields electrical transport that counteracts the diffusive transport of nanoparticles. BCyElFFF greatly extends separation capabilities of the cyclical electrical field flow fractionation to sub 50 nm nanoparticles and provides a powerful alternative to other separation and characterization techniques capable of separating nanoparticles smaller than 50 nm.


Subject(s)
Fractionation, Field Flow/methods , Gold/analysis , Metal Nanoparticles/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size
20.
Lab Chip ; 23(17): 3778-3784, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37577834

ABSTRACT

ChatGPT is a generative AI model that has garnered tremendous public interest due to its ability to solve diverse problems through high-level reasoning and analysis. Among its features is an ability to create and debug code. While this capability has been explored with conventional programming languages such as Python, it has yet to be applied to computer-aided design (CAD). In this work, we utilized GPT-4 to create functional microfluidic components using OpenSCAD, an open-source CAD software package. Through an iterative dialogue, GPT-4 created functional designs for a helix/spiral, a valve, a t-junction, and a serpentine channel. This concept could facilitate CAD in the future for both technical and non-technical users and can be reasonably extended to other fields.

SELECTION OF CITATIONS
SEARCH DETAIL