Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Mol Cell ; 76(1): 27-43.e11, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31447390

ABSTRACT

Cancer cells acquire unlimited proliferative capacity by either re-expressing telomerase or inducing alternative lengthening of telomeres (ALT), which relies on telomere recombination. Here, we show that ALT recombination requires coordinate regulation of the SMX and BTR complexes to ensure the appropriate balance of resolution and dissolution activities at recombining telomeres. Critical to this control is SLX4IP, which accumulates at ALT telomeres and interacts with SLX4, XPF, and BLM. Loss of SLX4IP increases ALT-related phenotypes, which is incompatible with cell growth following concomitant loss of SLX4. Inactivation of BLM is sufficient to rescue telomere aggregation and the synthetic growth defect in this context, suggesting that SLX4IP favors SMX-dependent resolution by antagonizing promiscuous BLM activity during ALT recombination. Finally, we show that SLX4IP is inactivated in a subset of ALT-positive osteosarcomas. Collectively, our findings uncover an SLX4IP-dependent regulatory mechanism critical for telomere maintenance in ALT cancer cells.


Subject(s)
Bone Neoplasms/enzymology , Carrier Proteins/metabolism , Osteosarcoma/enzymology , RecQ Helicases/metabolism , Telomere Homeostasis , Telomere/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carrier Proteins/genetics , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout , Mice, SCID , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Binding , Protein Interaction Domains and Motifs , RecQ Helicases/genetics , Recombinases/genetics , Recombinases/metabolism , Signal Transduction , Telomere/genetics , Telomere/pathology
2.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26350214

ABSTRACT

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Subject(s)
DNA Repair , DNA Replication , DNA-Binding Proteins/chemistry , Transcription Factors/chemistry , Adenosine Triphosphatases/metabolism , Cell Line , DNA/metabolism , DNA-Binding Proteins/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , Protein Structure, Tertiary , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Nucleic Acids Res ; 40(13): 6049-59, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22457066

ABSTRACT

DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18(-/-) cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.


Subject(s)
DNA Breaks, Double-Stranded , Proliferating Cell Nuclear Antigen/metabolism , Sumoylation , DNA Replication , Histones/metabolism , Homologous Recombination , Humans , Mutation , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/genetics , SUMO-1 Protein/metabolism
4.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37704395

ABSTRACT

The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise the viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation by trapping PARP enzymes on chromatin enables RB-deficient cells to progress to mitosis with unresolved replication stress. These defects contribute to high levels of DNA damage and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of drugs that target both PARP1 and PARP2 and can be suppressed by reexpression of the RB protein. Together, these data indicate that drugs that target PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.


Subject(s)
Epigenesis, Genetic , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA , Chromatin/genetics , DNA Damage/genetics
5.
DNA Repair (Amst) ; 128: 103525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320956

ABSTRACT

Immunofluorescence imaging is a standard experimental tool for monitoring the response of cellular factors to DNA damage. Visualizing the recruitment of DNA Damage Response (DDR) components requires high affinity antibodies, which are generally available. In contrast, reagents for the display of the lesions that induce the response are far more limited. Consequently, DDR factor accumulation often serves as a surrogate for damage, without reporting the actual inducing structure. This limitation has practical implications given the importance of the response to DNA reactive drugs such as those used in cancer therapy. These include interstrand crosslink (ICL) forming compounds which are frequently employed clinically. Among them are the psoralens, natural products that form ICLs upon photoactivation and applied therapeutically since antiquity. However, despite multiple attempts, antibodies against psoralen ICLs have not been developed. To overcome this limitation, we developed a psoralen tagged with an antigen for which there are commercial antibodies. In this report we describe our application of the tagged psoralen in imaging experiments, and the unexpected discoveries they revealed.


Subject(s)
DNA Repair , Ficusin , Ficusin/pharmacology , Cross-Linking Reagents/pharmacology , DNA Damage , DNA
6.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993348

ABSTRACT

The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair pathways, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes may represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation through inhibition of PARP enzymes enables RB-deficient cells to progress to mitosis with unresolved replication stress and under-replicated DNA. These defects contribute to high levels of DNA damage, decreased proliferation, and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of inhibitors that target both PARP1 and PARP2 and can be suppressed by re-expression of the RB protein. Together, these data indicate that inhibitors of PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.

7.
Proc Natl Acad Sci U S A ; 105(46): 17724-9, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-19001268

ABSTRACT

Treatment of yeast and human cells with DNA-damaging agents elicits Rad6-Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA) at its Lys-164 residue [ubiquitin (Ub)-PCNA], and this PCNA modification is indispensable for promoting the access of translesion synthesis (TLS) polymerases (Pols) to PCNA. However, the means by which K164-linked Ub modulates the proficiency of TLS Pols to bind PCNA and take over synthesis from the replicative Pol has remained unclear. One model that has gained considerable credence is that the TLS Pols bind PCNA at 2 sites, to the interdomain connector loop via their PCNA-interacting protein (PIP) domain and to the K164-linked Ub moiety via their Ub-binding domain (UBD). Specifically, this model postulates that the UBD-mediated binding of TLS Pols to the Ub moiety on PCNA is necessary for TLS. To test the validity of this model, we examine the contributions that the PIP and Ub-binding zinc finger (UBZ) domains of human Poleta make to its functional interaction with PCNA, its colocalization with PCNA in replication foci, and its role in TLS in vivo. We conclude from these studies that the binding to PCNA via its PIP domain is a prerequisite for Poleta's ability to function in TLS in human cells and that the direct binding of the Ub moiety on PCNA via its UBZ domain is not required. We discuss the possible role of the Ub moiety on PCNA in TLS.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin/metabolism , Amino Acid Motifs , Amino Acid Sequence , DNA Mutational Analysis , DNA Replication , Humans , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship
8.
J Vis Exp ; (173)2021 07 27.
Article in English | MEDLINE | ID: mdl-34398140

ABSTRACT

Considerable insight is present into the cellular response to double strand breaks (DSBs), induced by nucleases, radiation, and other DNA breakers. In part, this reflects the availability of methods for the identification of break sites, and characterization of factors recruited to DSBs at those sequences. However, DSBs also appear as intermediates during the processing of DNA adducts formed by compounds that do not directly cause breaks, and do not react at specific sequence sites. Consequently, for most of these agents, technologies that permit the analysis of binding interactions with response factors and repair proteins are unknown. For example, DNA interstrand crosslinks (ICLs) can provoke breaks following replication fork encounters. Although formed by drugs widely used as cancer chemotherapeutics, there has been no methodology for monitoring their interactions with replication proteins. Here, we describe our strategy for following the cellular response to fork collisions with these challenging adducts. We linked a steroid antigen to psoralen, which forms photoactivation dependent ICLs in nuclei of living cells. The ICLs were visualized by immunofluorescence against the antigen tag. The tag can also be a partner in the Proximity Ligation Assay (PLA) which reports the close association of two antigens. The PLA was exploited to distinguish proteins that were closely associated with the tagged ICLs from those that were not. It was possible to define replisome proteins that were retained after encounters with ICLs and identify others that were lost. This approach is applicable to any structure or DNA adduct that can be detected immunologically.


Subject(s)
DNA Damage , DNA Repair , Cross-Linking Reagents , DNA Adducts , DNA Replication , Ficusin
9.
Front Cell Dev Biol ; 9: 729265, 2021.
Article in English | MEDLINE | ID: mdl-34532320

ABSTRACT

Replisomes follow a schedule in which replication of DNA in euchromatin is early in S phase while sequences in heterochromatin replicate late. Impediments to DNA replication, referred to as replication stress, can stall replication forks triggering activation of the ATR kinase and downstream pathways. While there is substantial literature on the local consequences of replisome stalling-double strand breaks, reversed forks, or genomic rearrangements-there is limited understanding of the determinants of replisome stalling vs. continued progression. Although many proteins are recruited to stalled replisomes, current models assume a single species of "stressed" replisome, independent of genomic location. Here we describe our approach to visualizing replication fork encounters with the potent block imposed by a DNA interstrand crosslink (ICL) and our discovery of an unexpected pathway of replication restart (traverse) past an intact ICL. Additionally, we found two biochemically distinct replisomes distinguished by activity in different stages of S phase and chromatin environment. Each contains different proteins that contribute to ICL traverse.

10.
Methods Enzymol ; 661: 53-75, 2021.
Article in English | MEDLINE | ID: mdl-34776223

ABSTRACT

Replication forks encounter numerous challenges as they move through eu- and hetero-chromatin during S phase in mammalian cells. These include a variety of impediments to the unwinding of DNA by the replicative helicase such as alternate DNA structures, transcription complexes and R-loops, DNA-protein complexes, and DNA chemical adducts. Much of our knowledge of these events is based on analysis of markers of the replication stress and DNA Damage Response that follow stalling of replisomes. To examine consequences for the replisomes more directly, we developed an approach for imaging collisions of replication forks with the potent block presented by an interstrand crosslink (ICL). The strategy is based on the visualization on DNA fibers of the encounter of replication tracts and an antigen tagged ICL. Our studies revealed an unexpected restart of DNA synthesis past an intact ICL. In addition, and also unexpected, we found two distinct versions of the replisome, one biased toward euchromatin and the other more prominent in heterochromatin. Here, we present details of our experimental procedures that led to these observations.


Subject(s)
DNA Helicases , DNA Replication , Animals , DNA/chemistry , DNA Damage , DNA Helicases/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Mammals/genetics
11.
Methods Mol Biol ; 1999: 31-57, 2019.
Article in English | MEDLINE | ID: mdl-31127568

ABSTRACT

The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.


Subject(s)
DNA Replication , DNA/metabolism , Telomerase/metabolism , Telomere Homeostasis/genetics , Telomere/metabolism , DNA Damage/genetics , G-Quadruplexes , Genome, Human , Genomic Instability , Humans
12.
Methods Mol Biol ; 1999: 319-325, 2019.
Article in English | MEDLINE | ID: mdl-31127588

ABSTRACT

The ability to analyze individual DNA fibers undergoing active DNA synthesis has emerged as a powerful technique in the field of DNA replication. Much of the initial analysis has focused on replication throughout the genome. However, more recent advancements in this technique have allowed for the visualization of replication patterns at distinct loci or regions within the genome. This type of locus-specific resolution will greatly enhance our understanding of the dynamics of DNA replication in regions that provide a challenge to the replication machinery. Here, we describe a protocol that will allow for the visualization of DNA replication through one of the most structurally complex regions in the human genome, the telomeric DNA.


Subject(s)
DNA Replication , DNA/genetics , In Situ Hybridization, Fluorescence/methods , Molecular Imaging/methods , Telomere/metabolism , Cell Line , DNA/chemistry , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , Fluorescent Antibody Technique, Direct/methods , Genetic Loci , Humans , Idoxuridine/chemistry , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Molecular Imaging/instrumentation , Molecular Probes/chemistry , Staining and Labeling/methods
13.
Cell Rep ; 27(6): 1794-1808.e5, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067464

ABSTRACT

Eukaryotic replisomes are driven by the mini chromosome maintenance (MCM [M]) helicase complex, an offset ring locked around the template for leading strand synthesis by CDC45 (C) and GINS (G) proteins. Although the CDC45 MCM GINS (CMG) structure implies that interstrand crosslinks (ICLs) are absolute blocks to replisomes, recent studies indicate that cells can restart DNA synthesis on the side of the ICL distal to the initial encounter. Here, we report that restart requires ATR and is promoted by FANCD2 and phosphorylated FANCM. Following introduction of genomic ICLs and dependent on ATR and FANCD2 but not on the Fanconi anemia core proteins or FAAP24, FANCM binds the replisome complex, with concomitant release of the GINS proteins. In situ analysis of replisomes proximal to ICLs confirms the ATR-dependent release of GINS proteins while CDC45 is retained on the remodeled replisome. The results demonstrate the plasticity of CMG composition in response to replication stress.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Helicases/metabolism , DNA-Directed DNA Polymerase , Fanconi Anemia Complementation Group D2 Protein/metabolism , Multienzyme Complexes , Animals , Chickens , DNA Replication , Epistasis, Genetic , Female , HeLa Cells , Humans , Male , Mice , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding
14.
Oncotarget ; 9(67): 32868-32880, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30214690

ABSTRACT

The Alternative Lengthening of Telomeres (ALT) pathway stimulates telomere elongation and prevents cellular senescence in approximately 60% of osteosarcoma. While the precise mechanism underlying activation of the ALT pathway is unclear, mutations in the chromatin remodeling protein ATRX, histone chaperone DAXX, and the histone variant H3.3 correlate with ALT status. ATRX and DAXX facilitate deposition of the histone variant H3.3 within heterochromatic regions suggesting that loss of ATRX, DAXX, and/or H3.3 lead to defects in the stability of telomeric heterochromatin. Genetic mutations in ATRX, DAXX, and H3.3 have been detected in ALT positive cancers, however, a subset of ALT samples show loss of ATRX or DAXX protein expression or localization without evidence of genetic alterations suggesting additional uncharacterized defects in ATRX/DAXX/H3.3 function. Here, using Next Generation Sequencing we identified a novel gene fusion event between DAXX and the kinesin motor protein, KIFC3, leading to the translation of a chimeric DAXX-KIFC3 fusion protein. Moreover, we demonstrate that the fusion of KIFC3 to DAXX causes defects in DAXX function likely promoting ALT activity. These data highlight a potentially unrecognized mechanism of DAXX inactivation in ALT positive osteosarcoma and provide rationale for thorough and comprehensive analyses of ATRX/DAXX/H3.3 proteins in ALT positive cancers.

15.
J Vis Exp ; (122)2017 04 20.
Article in English | MEDLINE | ID: mdl-28448050

ABSTRACT

The DNA Damage Response (DDR) has been extensively characterized in studies of double strand breaks (DSBs) induced by laser micro beam irradiation in live cells. The DDR to helix distorting covalent DNA modifications, including interstrand DNA crosslinks (ICLs), is not as well defined. We have studied the DDR stimulated by ICLs, localized by laser photoactivation of immunotagged psoralens, in the nuclei of live cells. In order to address fundamental questions about adduct distribution and replication fork encounters, we combined laser localization with two other technologies. DNA fibers are often used to display the progress of replication forks by immunofluorescence of nucleoside analogues incorporated during short pulses. Immunoquantum dots have been widely employed for single molecule imaging. In the new approach, DNA fibers from cells carrying laser localized ICLs are spread onto microscope slides. The tagged ICLs are displayed with immunoquantum dots and the inter-lesion distances determined. Replication fork collisions with ICLs can be visualized and different encounter patterns identified and quantitated.


Subject(s)
DNA Adducts/analysis , Furocoumarins/analysis , Lasers , Single Molecule Imaging/methods , Cell Line , DNA/chemistry , DNA Adducts/chemistry , DNA Breaks, Double-Stranded , DNA Damage , Fluorescent Antibody Technique/methods , Furocoumarins/chemistry , Humans , Microscopy, Confocal , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Quantum Dots , Single Molecule Imaging/instrumentation
16.
Front Genet ; 7: 84, 2016.
Article in English | MEDLINE | ID: mdl-27242893

ABSTRACT

DNA interstrand crosslinks (ICLs) block unwinding of the double helix, and have always been regarded as major challenges to replication and transcription. Compounds that form these lesions are very toxic and are frequently used in cancer chemotherapy. We have developed two strategies, both based on immunofluorescence (IF), for studying cellular responses to ICLs. The basis of each is psoralen, a photoactive (by long wave ultraviolet light, UVA) DNA crosslinking agent, to which we have linked an antigen tag. In the one approach, we have taken advantage of DNA fiber and immuno-quantum dot technologies for visualizing the encounter of replication forks with ICLs induced by exposure to UVA lamps. In the other, psoralen ICLs are introduced into nuclei in live cells in regions of interest defined by a UVA laser. The antigen tag can be displayed by conventional IF, as can the recruitment and accumulation of DNA damage response proteins to the laser localized ICLs. However, substantial difference between the technologies creates considerable uncertainty as to whether conclusions from one approach are applicable to those of the other. In this report, we have employed the fiber/quantum dot methodology to determine lesion density and spacing on individual DNA molecules carrying laser localized ICLs. We have performed the same measurements on DNA fibers with ICLs induced by exposure of psoralen to UVA lamps. Remarkably, we find little difference in the adduct distribution on fibers prepared from cells exposed to the different treatment protocols. Furthermore, there is considerable similarity in patterns of replication in the vicinity of the ICLs introduced by the two techniques.

17.
PLoS One ; 8(8): e70391, 2013.
Article in English | MEDLINE | ID: mdl-23936422

ABSTRACT

Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population.


Subject(s)
Comet Assay/methods , DNA Repair , DNA Replication , DNA-Binding Proteins/metabolism , DNA/biosynthesis , DNA/genetics , Single-Cell Analysis/methods , Bromodeoxyuridine/metabolism , DNA Damage/genetics , DNA Repair/radiation effects , DNA Replication/radiation effects , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Dose-Response Relationship, Radiation , Gene Knockout Techniques , HCT116 Cells , HeLa Cells , Humans , Kinetics , S Phase/genetics , S Phase/radiation effects , Ubiquitin-Protein Ligases , Ultraviolet Rays
18.
DNA Repair (Amst) ; 8(12): 1444-51, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19783229

ABSTRACT

DNA polymerase zeta is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase zeta in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase zeta. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3(-/-) MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.


Subject(s)
DNA Repair , DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Ultraviolet Rays , Animals , Cell Line , DNA Replication , DNA-Directed DNA Polymerase/deficiency , Mice , Mice, Inbred C57BL
19.
Mol Cell Biol ; 29(11): 3113-23, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19332561

ABSTRACT

The Y family DNA polymerase Rev1 has been proposed to play a regulatory role in the replication of damaged templates. To elucidate the mechanism by which Rev1 promotes DNA damage bypass, we have analyzed the progression of replication on UV light-damaged DNA in mouse embryonic fibroblasts that contain a defined deletion in the N-terminal BRCT domain of Rev1 or that are deficient for Rev1. We provide evidence that Rev1 plays a coordinating role in two modes of DNA damage bypass, i.e., an early and a late pathway. The cells carrying the deletion in the BRCT domain are deficient for the early pathway, reflecting a role of the BRCT domain of Rev1 in mutagenic translesion synthesis. Rev1-deficient cells display a defect in both modes of DNA damage bypass. Despite the persistent defect in the late replicational bypass of fork-blocking (6-4)pyrimidine-pyrimidone photoproducts, overall replication is not strongly affected by Rev1 deficiency. This results in almost completely replicated templates that contain gaps encompassing the photoproducts. These gaps are inducers of DNA damage signaling leading to an irreversible G(2) arrest. Our results corroborate a model in which Rev1-mediated DNA damage bypass at postreplicative gaps quenches irreversible DNA damage responses.


Subject(s)
DNA Damage , Fibroblasts/enzymology , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Animals , DNA/metabolism , DNA-Directed DNA Polymerase , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/radiation effects , G2 Phase/radiation effects , Mice , Mutation/genetics , Nucleotidyltransferases/deficiency , Protein Structure, Tertiary , Pyrimidine Dimers/metabolism , S Phase/radiation effects , Signal Transduction/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL