Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmacogenetics ; 12(4): 287-97, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12042666

ABSTRACT

UDP-glucuronosyltransferase (UGT) 1A8 is part of the UGT1 locus and is expressed exclusively in extrahepatic tissues. Analysis of UGT1A8 exon 1 sequence has identified four genotypes from a population of 69 individuals. While there are four alleles, one of the single base pair changes leads to a silent mutation at T255, while the other mutations lead to amino acid substitutions at positions 173 and 277, creating three allelic variants. UGT1A8*1 (A173C277), UGT1A8*1a (T255A>G), UGT1A8*2 (G173C277) and UGT1A8*3 (A173Y277). The allelic frequencies of UGT1A8*1, UGT1A8*1a, UGT1A8*2 and UGT1A8*3 are 0.551, 0.282, 0.145 and 0.022, respectively. To examine the properties of the UGT1A8 proteins, UGT1A8*1 and UGT1A8*2 were cloned from a human colon cDNA library and UGT1A8*3 generated by mutagenesis using UGT1A8*1 as template. The cDNAs were expressed in HK293 cells to examine catalytic function as well as abundance as observed by analysis of UGT1A8-GFP (green fluorescent protein) expression. The single amino acid change that identifies UGT1A8*1 (A173) and UGT1A8*2 (G173) has little impact on function, while the UGT1A8*3 (Y277) is a conserved amino acid alteration represented by a dramatic reduction in catalytic activity. Protein abundance, as determined by Western blot analysis following transient transfection, is not altered. In addition, functional UGT1A8-GFP variants displayed staining in the cytoplasmic region, indicating that each protein is expressed in similar cellular compartments. Together, these data suggest that the null UGT1A8*3 results from structural changes and not a lack of protein expression. Allelic variation leading to singular codon changes could potentially alter drug metabolism in extrahepatic tissues.


Subject(s)
Glucuronosyltransferase/genetics , Polymorphism, Genetic/physiology , Blotting, Western , Cell Line , Cloning, Molecular , Colon/enzymology , DNA/blood , DNA/metabolism , DNA Primers/chemistry , DNA, Complementary/isolation & purification , Exons , Genotype , Glucuronosyltransferase/metabolism , Humans , Liver/enzymology , Mutagenesis, Site-Directed , Plasmids , Polymerase Chain Reaction , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transfection
2.
Mol Pharmacol ; 67(4): 1247-56, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15630080

ABSTRACT

We show here that arsenite (As(3+)) elicits multiple effects on gene control, such as the interruption of cell cycle control by initiating G(2)/M arrest as well as inhibiting the aryl hydrocarbon (Ah) receptor-mediated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible expression of CYP1A1. This raises the question as to whether As(3+) is selectively inhibiting TCDD induction of CYP1A1 independent of cell cycle control. As(3+) stimulated a concentration-dependent increase in G(2)/M phase arrest that was detected at 12.5 microM As(3). However, cotreatment of HepG2 cells with TCDD and concentrations of As(3+) as low as 0.5 microM stimulated a pronounced decrease in the induction of CYP1A1-dependent ethoxyresorufin-O-deethylase activity and protein, indicating that the inhibition of CYP1A1 induction by As(3+) was considerably more sensitive than As(3+)-initiated cell cycle arrest. Low concentrations of As(3+) also initiate a dose-dependent reduction in TCDD-induced mouse Cyp1a1 as well as human CYP1A1 in primary hepatocytes cultured from transgenic CYP1A1N(+/-) mice. Because primary hepatocytes in culture are quiescent, these results indicate that the actions of As(3+) on TCDD-initiated induction of CYP1A1 are independent of cell cycle control. As(3+) does not impact on Ah receptor function as evaluated by nuclear transport and binding to xenobiotic responsive element sequences, but it does reduce TCDD-induced CYP1A1 mRNA, a property that is concordant with RNA polymerase II association to the gene and the reduction in transcriptional heteronuclear RNA. We conclude from these studies that interruption of CYP1A1-induced transcription by As(3+) is not dependent upon cell cycle arrest.


Subject(s)
Arsenites/pharmacology , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Polychlorinated Dibenzodioxins/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A1/biosynthesis , Enzyme Induction/drug effects , Humans , Transcription, Genetic/drug effects
3.
J Biol Chem ; 279(23): 23969-76, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15037607

ABSTRACT

Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.


Subject(s)
Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1A1/genetics , Gene Expression Regulation, Developmental , Animals , Animals, Newborn/metabolism , Blotting, Western , Brain/drug effects , Brain/metabolism , Cell Line , Cells, Cultured , Cytochrome P-450 CYP1A1/metabolism , DNA/metabolism , Hepatocytes/metabolism , Humans , Kidney/metabolism , Lactation , Ligands , Liver/drug effects , Liver/metabolism , Luciferases/metabolism , Lung/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Models, Genetic , Polychlorinated Dibenzodioxins , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL