Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Physiology (Bethesda) ; 38(2): 0, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36317939

ABSTRACT

Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.


Subject(s)
Cardiovascular System , Humans , Animals , Vertebrates , Hypoxia , Heart/physiology
2.
J Exp Biol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246147

ABSTRACT

Oxygen deprivation during embryonic development can permanently remodel the vertebrate heart, often causing cardiovascular abnormalities in adulthood. While this phenomenon is mostly damaging, recent evidence suggests developmental hypoxia produces stress-tolerant phenotypes in some ectothermic vertebrates. Embryonic common snapping turtles (Chelydra serpentina) subjected to chronic hypoxia display improved cardiac anoxia tolerance after hatching, which is associated with altered Ca2+ homeostasis in heart cells (cardiomyocytes). Here we examined the possibility that changes in Ca2+ cycling, through the sarcoplasmic reticulum (SR), underlie the developmentally programmed cardiac phenotype of snapping turtles. We investigated this hypothesis by isolating cardiomyocytes from juvenile turtles that developed in either normoxia (21% O2; "N21") or chronic hypoxia (10% O2; "H10") and subjected the cells to anoxia/reoxygenation, either in the presence or absence of SR Ca2+-cycling inhibitors. We simultaneously measured cellular shortening, intracellular [Ca2+], and intracellular pH (pHi). Under normoxic conditions, N21 and H10 cardiomyocytes shortened equally, but H10 Ca2+ transients (Δ[Ca2+]i) were twofold smaller than N21 cells, and SR inhibition only decreased N21 shortening and Δ[Ca2+]i. Anoxia subsequently depressed shortening, Δ[Ca2+]i, and pHi in control N21 and H10 cardiomyocytes, yet H10 shortening and Δ[Ca2+]i recovered to pre-anoxic levels, partly due to enhanced myofilament Ca2+ sensitivity. SR blockade abolished the recovery of anoxic H10 cardiomyocytes and potentiated decreases in shortening, Δ[Ca2+]i, and pHi. Our novel results provide the first evidence of developmental programming of SR function and demonstrate that developmental hypoxia confers a long-lasting, superior anoxia-tolerant cardiac phenotype in snapping turtles, by enhancing myofilament Ca2+ sensitivity and modifying SR function.

3.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39109475

ABSTRACT

Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.


Subject(s)
Cardiovascular System , Climate Change , Hypoxia , Stress, Physiological , Vertebrates , Animals , Hypoxia/physiopathology , Vertebrates/physiology , Vertebrates/growth & development , Cardiovascular System/growth & development , Cardiovascular System/physiopathology , Oviparity , Adaptation, Physiological
4.
J Exp Biol ; 226(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37066839

ABSTRACT

Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.


Subject(s)
Turtles , Animals , Reactive Oxygen Species/metabolism , Turtles/metabolism , Superoxides/metabolism , Hydrogen Peroxide/metabolism , Hypoxia/metabolism , Mitochondria, Heart/metabolism , Succinic Acid/metabolism , Succinates/metabolism , Mammals/metabolism
5.
Article in English | MEDLINE | ID: mdl-36529208

ABSTRACT

The Alaska blackfish (Dallia pectoralis) is the only air-breathing fish in the Arctic. In the summer, a modified esophagus allows the fish to extract oxygen from the air, but this behavior is not possible in the winter because of ice and snow cover. The lack of oxygen (hypoxia) and near freezing temperatures in winter is expected to severely compromise metabolism, and yet remarkably, overwintering Alaska blackfish remain active. To maintain energy balance in the brain and limit the accumulation of reactive oxygen species (ROS), we hypothesized that cold hypoxic conditions would trigger brain mitochondrial remodeling in the Alaska blackfish. To address this hypothesis, fish were acclimated to warm (15 °C) normoxia, cold (5 °C) normoxia or cold hypoxia (5 °C, 2.1-4.2 kPa; no air access) for 5-8 weeks. Mitochondrial respiration, ADP affinity and H202 production were measured at 10 °C in isolated brain homogenates with an Oroboros respirometer. Cold acclimation and chronic hypoxia had no effects on mitochondrial aerobic capacity or ADP affinity. However, cold acclimation in normoxia led to a suppression of brain mitochondrial H202 production, which persisted and became more pronounced in the cold hypoxic fish. Overall, our study suggests cold acclimation supresses ROS production in Alaska blackfish, which may protect the fish from oxidative stress when oxygen becomes limited during winter.


Subject(s)
Cold Temperature , Hypoxia , Animals , Reactive Oxygen Species/metabolism , Alaska , Oxygen/metabolism , Fishes/physiology , Acclimatization , Brain/metabolism
6.
J Pineal Res ; 72(1): e12766, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34634151

ABSTRACT

Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2 ) pregnancy ± melatonin (M) treatment (5 µg·ml-1 .day-1 ) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15-20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia-induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair-fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in-vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair-fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch-up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia-induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair-fed pregnancies. Whilst maternal treatment of normoxic or pair-fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia.


Subject(s)
Melatonin , Pregnancy Complications , Animals , Female , Fetal Growth Retardation , Hypoxia , Melatonin/pharmacology , Pregnancy , Rats , Rats, Wistar
7.
J Pineal Res ; 73(3): e12821, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35941749

ABSTRACT

Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown. Furthermore, while maternal antioxidant treatments are emerging as a promising new strategy to protect the hypoxic fetus, whether these treatments convey similar protection to cardiac mitochondria in the male or female fetus has not been investigated. Therefore, using an established rat model, we measured the sex-dependent effects of gestational hypoxia and maternal melatonin treatment on fetal cardiac mitochondrial respiration, reactive oxygen species (ROS) production, and lipid peroxidation. Pregnant Wistar rats were subjected to normoxia or hypoxia (13% oxygen) during gestational days (GDs) 6-20 (term ~22 days) with or without melatonin treatment (5 µg/ml in maternal drinking water). On GD 20, mitochondrial aerobic respiration and H2 O2 production were measured in fetal heart tissue, together with lipid peroxidation and citrate synthase (CS) activity. Gestational hypoxia reduced maternal body weight gain (p < .01) and increased placental weight (p < .05) but had no effect on fetal weight or litter size. Cardiac mitochondria from male but not female fetuses of hypoxic pregnancy had reduced respiratory capacity at Complex II (CII) (p < .05), and an increase in H2 O2 production/O2 consumption (p < .05) without any changes in lipid peroxidation. CS activity was also unchanged in both sexes. Despite maternal melatonin treatment increasing maternal and fetal plasma melatonin concentration (p < .001), melatonin treatment had no effect on any of the mitochondrial parameters investigated. To conclude, we show that gestational hypoxia leads to ROS generation from the mitochondrial electron transport chain and affects fetal cardiac mitochondrial respiration in a sex-dependent manner. We also show that maternal melatonin treatment had no effect on these relationships, which has implications for the development of future therapies for hypoxic pregnancies.


Subject(s)
Melatonin , Animals , Female , Fetal Heart/metabolism , Hypoxia/metabolism , Male , Melatonin/metabolism , Melatonin/pharmacology , Mitochondria, Heart/metabolism , Oxidative Stress , Oxygen/metabolism , Oxygen/pharmacology , Placenta , Pregnancy , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
8.
Proc Biol Sci ; 286(1905): 20191072, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31238852

ABSTRACT

For some species of ectothermic vertebrates, early exposure to hypoxia during embryonic development improves hypoxia-tolerance later in life. However, the cellular mechanisms underlying this phenomenon are largely unknown. Given that hypoxic survival is critically dependent on the maintenance of cardiac function, we tested the hypothesis that developmental hypoxia alters cardiomyocyte physiology in a manner that protects the heart from hypoxic stress. To test this hypothesis, we studied the common snapping turtle, which routinely experiences chronic developmental hypoxia and exploits hypoxic environments in adulthood. We isolated cardiomyocytes from juvenile turtles that embryonically developed in either normoxia (21% O2) or hypoxia (10% O2), and subjected them to simulated anoxia and reoxygenation, while simultaneously measuring intracellular Ca2+, pH and reactive oxygen species (ROS) production. Our results suggest developmental hypoxia improves cardiomyocyte anoxia-tolerance of juvenile turtles, which is supported by enhanced myofilament Ca2+-sensitivity and a superior ability to suppress ROS production. Maintenance of low ROS levels during anoxia might limit oxidative damage and a greater sensitivity to Ca2+ could provide a mechanism to maintain contractile force. Our study suggests developmental hypoxia has long-lasting effects on turtle cardiomyocyte function, which might prime their physiology for exploiting hypoxic environments.


Subject(s)
Turtles/physiology , Animals , Embryo, Nonmammalian/physiology , Embryonic Development , Hypoxia , Oxygen/analysis , Reptiles , Stress, Physiological , Turtles/growth & development
9.
Environ Sci Technol ; 53(16): 9895-9904, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31343865

ABSTRACT

Deepwater Horizon crude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi (Coryphaena hippurus). Cardiomyocytes directly exposed to oil exhibited reduced contractility over a range of environmentally relevant concentrations (2.8-12.9 µg l-1∑PAH). This reduction in contractility was most pronounced at higher stimulation frequencies, corresponding to the upper limits of previously measured in situ mahi heart rates. To better understand the mechanisms underlying impaired contractile function, electrophysiological studies were performed, which revealed oil exposure prolonged cardiomyocyte action potentials and disrupted potassium cycling (9.9-30.4 µg l-1∑PAH). This study is the first to measure cellular contractility in oil-exposed cardiomyocytes from a pelagic fish. Results from this study contribute to previously observed impairments to heart function and whole-animal exercise performance in mahi, underscoring the advantages of using an integrative approach in examining mechanisms of oil-induced cardiotoxicity in marine fish.


Subject(s)
Perciformes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals
10.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1164-R1172, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27707718

ABSTRACT

The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype.


Subject(s)
Alligators and Crocodiles/embryology , Cell Plasticity , Embryonic Development/physiology , Fetal Growth Retardation/physiopathology , Hypoxia/physiopathology , Mitochondria/metabolism , Alligators and Crocodiles/physiology , Animals , Electron Transport Chain Complex Proteins/metabolism , Hypoxia/embryology
SELECTION OF CITATIONS
SEARCH DETAIL