Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Biochem J ; 480(16): 1241-1265, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37610048

ABSTRACT

Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.


Subject(s)
Protein Processing, Post-Translational , Humans , Phosphorylation , Acetylation , Cell Differentiation , Homeostasis
2.
Anal Chem ; 95(2): 1027-1037, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36524968

ABSTRACT

This research reports on the preparation of a boron-doped diamond microelectrode modified with platinum nanoparticles and Nafion and its application for detecting nitric oxide (NO) in vitro in the mouse colon. Platinum nanoparticle deposition was performed potentiodynamically using a 2.0 mmol L-1 potassium hexachloroplatinate solution and cycling from -0.2 to 1.3 V vs Ag/AgCl at 0.01 V s-1 for 10 cycles. The Nafion overlayer was applied by immersion in a solution containing 2.5% (w/v) colloidal Nafion and drying overnight at 55 °C in a humid environment. The optimal microelectrode preparation conditions were chosen based on the electrode response for NO oxidation as well as rejection of nitrite (NO2-) oxidation, the main interferent in the electrochemical detection of NO in biological media. Detection figures of merit include a sensitivity of 16.7 ± 2.7 mA M-1 cm-2 (n = 3 electrodes), a detection limit of 0.5 µmol L-1 (S/N = 3), and an electrode response reproducibility of 2.5% (RSD). Electrical stimulation and continuous amperometry were used to measure NO release from myenteric ganglia in wild-type male and female mice in response to an increasing number of electrical stimuli to study nitrergic signaling in the colon. We also present preliminary data regarding the use of optogenetics to selectively stimulate nitrergic myenteric neurons using blue light stimulation with a goal of understanding how inhibitory neuromuscular signaling is involved in the myenteric plexus circuitry that controls intestinal motility.


Subject(s)
Metal Nanoparticles , Nitric Oxide , Female , Male , Animals , Mice , Microelectrodes , Boron , Platinum , Diamond , Reproducibility of Results , Electrodes
3.
BMC Genomics ; 23(1): 214, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35296236

ABSTRACT

BACKGROUND: The "Assay for Transposase Accessible Chromatin sequencing" (ATAC-seq) is an efficient and easy to implement protocol to measure chromatin accessibility that has been widely used in multiple applications studying gene regulation. While several modifications or variants of the protocol have been published since it was first described, there has not yet been an extensive evaluation of the effects of specific protocol choices head-to-head in a consistent experimental setting. In this study, we tested multiple protocol options for major ATAC-seq components (including three reaction buffers, two reaction temperatures, two enzyme sources, and the use of either native or fixed nuclei) in a well-characterized cell line. With all possible combinations of components, we created 24 experimental conditions with four replicates for each (a total of 96 samples). In addition, we tested the 12 native conditions in a primary sample type (mouse lung tissue) with two different input amounts. Through these extensive comparisons, we were able to observe the effect of different ATAC-seq conditions on data quality and to examine the utility and potential redundancy of various quality metrics. RESULTS: In general, native samples yielded more peaks (particularly at loci not overlapping transcription start sites) than fixed samples, and the temperature at which the enzymatic reaction was carried out had a major impact on data quality metrics for both fixed and native nuclei. However, the effect of various conditions tested was not always consistent between the native and fixed samples. For example, the Nextera and Omni buffers were largely interchangeable across all other conditions, while the THS buffer resulted in markedly different profiles in native samples. In-house and commercial enzymes performed similarly. CONCLUSIONS: We found that the relationship between commonly used measures of library quality differed across temperature and fixation, and so evaluating multiple metrics in assessing the quality of a sample is recommended. Notably, we also found that these choices can bias the functional class of elements profiled and so we recommend evaluating several formulations in any new experiments. Finally, we hope the ATAC-seq workflow formulated in this study on crosslinked samples will help to profile archival clinical specimens.


Subject(s)
Cell Nucleus , Chromatin Immunoprecipitation Sequencing , Animals , Cell Nucleus/genetics , Chromatin/genetics , Formaldehyde , Mice , Sequence Analysis, DNA/methods
4.
Chem Res Toxicol ; 35(10): 1766-1776, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36048613

ABSTRACT

The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; HPD), primary metabolism (methylmalonyl-CoA epimerase; MCEE), and aldehyde detoxication (glyoxalase 1; GLO1) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., GLO1), little is known about the physiological role of glyoxalase domain-containing protein 4 (GLOD4) and 5 (GLOD5), paving the way for exciting avenues for future research.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Lactoylglutathione Lyase , Aldehydes , Antioxidants , Cations, Divalent , Humans , Lactoylglutathione Lyase/chemistry , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Lipids , Pyruvaldehyde/metabolism
5.
Analyst ; 147(11): 2523-2532, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35543208

ABSTRACT

We report herein on the use of a boron-doped diamond microelectrode (DME) to record oxidation currents in vitro associated with the release of serotonin from enterochromaffin cells in the epithelium of the human intestinal mucosa. Continuous amperometric measurements were made as a function of distance (ln current vs. distance) from the tissue surface in human jejunum specimens. The results demonstrate the capabilities of the DME for the stable and reproducible detection of serotonin in the complex environment of the human tissue. Serotonin release was evoked by the shearing force of a continuously flowing Krebs buffer solution at 36 °C with the tissue pinned down in a flow bath. Reproducible currents with distance were recorded for serotonin oxidation. Increased oxidation currents were observed in the presence of the selective serotonin reuptake inhibitor, fluoxetine, indicating that a significant fraction of the amperometric current recorded is attributable to serotonin oxidation. The nominal reciprocal slope, |slope-1|, of the ln current vs. distance plots increased from 270 ± 25 µm-1 in Krebs buffer (N = 3) to 471 ± 65 µm-1 during fluoxetine addition (N = 3), reflective of a reduced rate of reuptake in the presence of the SERT antagonist. The paper reports on the characterization of the diamond microelectrodes and the in vitro electrochemical measurement data.


Subject(s)
Diamond , Serotonin , Fluoxetine/pharmacology , Humans , Intestinal Mucosa , Jejunum , Microelectrodes
6.
Adv Exp Med Biol ; 1383: 33-43, 2022.
Article in English | MEDLINE | ID: mdl-36587144

ABSTRACT

ATP is an excitatory and inhibitory neurotransmitter, while nitric oxide (NO) is an inhibitory neurotransmitter in the enteric nervous system (ENS). We used a vesicular nucleotide transporter (SLC17A9, VNUT) antibody and a nitric oxide synthase (NOS) antibody to identify purinergic and nitrergic nerves in mouse and guinea ileum. Mouse: VNUT-immunoreactivity (ir) was detected in nerve fibers in myenteric ganglia and circular muscle. VNUT-ir fibers surrounded choline acetyltransferase (ChAT), nitric oxide synthase (nNOS), and calretinin-ir neurons. VNUT-ir nerve cell bodies were not detected. Tyrosine hydroxylase (TH)-ir nerves were detected in myenteric ganglia and the tertiary plexus. Guinea pig: VNUT-ir was detected in neurons and nerves fibers and did not overlap with NOS-ir nerve fibers. VNUT-ir was detected in nerve fibers in ganglia but not nerve cell bodies. VNUT-ir nerve fibers surrounded NOS-ir and NOS- neurons. NOS-ir and VNUT-ir nerve fibers did not overlap in myenteric ganglia or circular muscle. VNUT-ir nerves surrounded some ChAT-ir neurons. VNUT-ir and ChAT-ir were detected in separate nerves in the CM. VNUT-ir nerve fibers surrounded calretinin-ir neurons.Conclusions: VNUT-ir neurons likely mediate purinergic signaling in small intestinal myenteric ganglia and circular muscle. ATP and NO are likely released from different inhibitory motorneurons. VNUT-ir and ChAT-ir interneurons mediate cholinergic and purinergic synaptic transmission in the myenteric plexus.


Subject(s)
Myenteric Plexus , Nitric Oxide Synthase , Guinea Pigs , Animals , Myenteric Plexus/metabolism , Calbindin 2 , Nitric Oxide Synthase/metabolism , Muscles/metabolism , Neurotransmitter Agents , Adenosine Triphosphate
7.
Mol Pharmacol ; 99(2): 147-162, 2021 02.
Article in English | MEDLINE | ID: mdl-33262250

ABSTRACT

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.


Subject(s)
Acetates/pharmacology , Dideoxynucleosides/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative-Nucleoside Transporter 2/genetics , Nevirapine/pharmacology , Ticagrelor/pharmacology , Uridine/analogs & derivatives , Uridine/metabolism , Bayes Theorem , Biological Transport , CRISPR-Cas Systems , Cell Line , Drug Interactions , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , Gene Knockout Techniques , HeLa Cells , Humans , Machine Learning , Thioinosine/analogs & derivatives , Thioinosine/pharmacology , Uridine/pharmacology
8.
Chembiochem ; 22(12): 2102-2106, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33725370

ABSTRACT

Post-translational modifications (PTMs) play roles in both physiological and pathophysiological processes through the regulation of enzyme structure and function. We recently identified a novel PTM, lactoylLys, derived through a nonenzymatic mechanism from the glycolytic by-product, lactoylglutathione. Under physiologic scenarios, glyoxalase 2 prevents the accumulation of lactoylglutathione and thus lactoylLys modifications. What dictates the site-specificity and abundance of lactoylLys PTMs, however, remains unknown. Here, we report sirtuin 2 as a lactoylLys eraser. Using chemical biology and CRISPR-Cas9, we show that SIRT2 controls the abundance of this PTM both globally and on chromatin. These results address a major gap in our understanding of how nonenzymatic PTMs are regulated and controlled.


Subject(s)
Sirtuin 2/metabolism , Thiolester Hydrolases/metabolism , Cell Line , Humans , Models, Molecular , Molecular Structure , Protein Processing, Post-Translational , Sirtuin 2/deficiency , Thiolester Hydrolases/deficiency
9.
Prostaglandins Other Lipid Mediat ; 153: 106524, 2021 04.
Article in English | MEDLINE | ID: mdl-33418267

ABSTRACT

The triplication of human chromosome 21 results in Down syndrome (DS), the most common genetic form of intellectual disability. This aneuploid condition also results in an enhanced risk of a spectrum of comorbid conditions, such as leukemia, early onset Alzheimer's disease, and diabetes. Individuals with DS also display an increased incidence of wound healing complications and resistance to solid tumor development. Due to this unique phenotype and the involvement of eicosanoids in key comorbidities like poor healing and tumor development, we hypothesized that cells from DS individuals would display altered eicosanoid production. Using age- and sex-matched dermal fibroblasts we interrogated this hypothesis. Briefly, assessment of over 90 metabolites derived from cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome p450 systems revealed a possible deficiency in the COX system. Basal gene expression and Western blotting experiments showed significantly decreased gene expression of COX1 and 2, and COX2 protein abundance in DS fibroblasts compared to euploid controls. Further, using two different stressors, scratch wound or LPS, we found that DS fibroblasts could not upregulate COX2 abundance and prostaglandin E2 production. Together, these findings show that dermal fibroblasts from DS individuals have a deficient COX2 response, which may contribute to wound healing complications and tumor resistance in DS.


Subject(s)
Dinoprostone , Cyclooxygenase 1 , Cyclooxygenase 2/metabolism , Down Syndrome , Humans
10.
Biochem J ; 477(1): 75-97, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31815277

ABSTRACT

Posterior capsule opacification (PCO) is a complication after cataract surgery that can disrupt vision. The epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) in response to transforming growth factor ß2 (TGFß2) has been considered an obligatory mechanism for PCO. In this study, we tested the efficacy of aspirin in inhibiting the TGFß2-mediated EMT of human LECs, LECs in human lens capsular bags, and lensectomized mice. In human LECs, the levels of the EMT markers α-smooth muscle actin (α-SMA) and fibronectin were drastically reduced by treatment with 2 mM aspirin. Aspirin also halted the EMT response of TGFß2 when introduced after EMT initiation. In human capsular bags, treatment with 2 mM aspirin significantly suppressed posterior capsule wrinkling and the expression α-SMA in capsule-adherent LECs. The inhibition of TGFß2-mediated EMT in human LECs was not dependent on Smad phosphorylation or MAPK and AKT-mediated signaling. We found that aspirin significantly increased the acetylation of K56 and K122 in histone H3 of human LECs. Chromatin immunoprecipitation assays using acetyl-H3K56 or acetyl-H3K122 antibody revealed that aspirin blocked the TGFß2-induced acetylation of H3K56 and H3K122 at the promoter regions of ACTA2 and COL1A1. After lensectomy in mice, we observed an increase in the proliferation and α-SMA expression of the capsule-adherent LECs, which was ameliorated by aspirin administration through drinking water. Taken together, our results showed that aspirin inhibits TGFß2-mediated EMT of LECs, possibly from epigenetic down-regulation of EMT-related genes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Capsule Opacification/drug therapy , Epithelial Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , Histones/metabolism , Posterior Capsule of the Lens/drug effects , Acetylation , Actins/metabolism , Animals , Cell Line , Epithelial Cells/pathology , Fibronectins/metabolism , Humans , Male , Mice , Mice, 129 Strain
11.
Proc Natl Acad Sci U S A ; 115(37): 9228-9233, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150385

ABSTRACT

Histone posttranslational modifications (PTMs) regulate chromatin dynamics, DNA accessibility, and transcription to expand the genetic code. Many of these PTMs are produced through cellular metabolism to offer both feedback and feedforward regulation. Herein we describe the existence of Lys and Arg modifications on histones by a glycolytic by-product, methylglyoxal (MGO). Our data demonstrate that adduction of histones by MGO is an abundant modification, present at the same order of magnitude as Arg methylation. These modifications were detected on all four core histones at critical residues involved in both nucleosome stability and reader domain binding. In addition, MGO treatment of cells lacking the major detoxifying enzyme, glyoxalase 1, results in marked disruption of H2B acetylation and ubiquitylation without affecting H2A, H3, and H4 modifications. Using RNA sequencing, we show that MGO is capable of altering gene transcription, most notably in cells lacking GLO1. Finally, we show that the deglycase DJ-1 protects histones from adduction by MGO. Collectively, our findings demonstrate the existence of a previously undetected histone modification derived from glycolysis, which may have far-reaching implications for the control of gene expression and protein transcription linked to metabolism.


Subject(s)
Arginine/metabolism , Histones/metabolism , Lactoylglutathione Lyase/metabolism , Protein Processing, Post-Translational/drug effects , Pyruvaldehyde , Transcription, Genetic/drug effects , HEK293 Cells , Humans , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology
12.
J Am Chem Soc ; 142(22): 9999-10007, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32390412

ABSTRACT

Reactive cellular metabolites can modify macromolecules and form adducts known as nonenzymatic covalent modifications (NECMs). The dissection of the mechanisms, regulation, and consequences of NECMs, such as glycation, has been challenging due to the complex and often ambiguous nature of the adducts formed. Specific chemical tools are required to directly track the formation of these modifications on key targets in order to uncover their underlying physiological importance. Here, we present the novel chemoenzymatic synthesis of an active azido-modified ribose analog, 5-azidoribose (5-AR), as well as the synthesis of an inactive control derivative, 1-azidoribose (1-AR), and their application toward understanding protein ribose-glycation in vitro and in cellulo. With these new probes we found that, similar to methylglyoxal (MGO) glycation, ribose glycation specifically accumulates on histones. In addition to fluorescent labeling, we demonstrate the utility of the probe in enriching modified targets, which were identified by label-free quantitative proteomics and high-resolution MS/MS workflows. Finally, we establish that the known oncoprotein and hexose deglycase, fructosamine 3-kinase (FN3K), recognizes and facilitates the removal of 5-AR glycation adducts in live cells, supporting the dynamic regulation of ribose glycation as well as validating the probe as a new platform to monitor FN3K activity. Altogether, we demonstrate this probe's utilities to uncover ribose-glycation and deglycation events as well as track FN3K activity toward establishing its potential as a new cancer vulnerability.


Subject(s)
Azides/metabolism , Histones/metabolism , Ribose/metabolism , Azides/chemistry , Glycosylation , Histones/chemistry , Molecular Structure , Ribose/chemistry
13.
Am J Physiol Heart Circ Physiol ; 318(2): H223-H237, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31774690

ABSTRACT

Complications associated with spinal cord injury (SCI) result from unregulated reflexes below the lesion level. Understanding neurotransmission distal to the SCI could improve quality of life by mitigating complications. The long-term impact of SCI on neurovascular transmission is poorly understood, but reduced sympathetic activity below the site of SCI enhances arterial neurotransmission (1). We studied sympathetic neurovascular transmission using a rat model of long-term paraplegia (T2-3) and tetraplegia (C6-7). Sixteen weeks after SCI, T2-3 and C6-7 rats had lower blood pressure (BP) than sham rats (103 ± 2 and 97 ± 4 vs. 117 ± 6 mmHg, P < 0.05). T2-3 rats had tachycardia (410 ± 6 beats/min), and C6-7 rats had bradycardia (299 ± 10 beats/min) compared with intact rats (321 ± 4 beats/min, P < 0.05). Purinergic excitatory junction potentials (EJPs) were measured in mesenteric arteries (MA) using microlectrodes, and norepinephrine (NE) release was measured using amperometry. NE release was similar in all groups, while EJP frequency-response curves from T2-3 and C6-7 rats were left-shifted vs. sham rats. EJPs in T2-3 and C6-7 rats showed facilitation followed by run-down during stimulation trains (10 Hz, 50 stimuli). MA reactivity to exogenous NE and ATP was similar in all rats. In T2-3 and C6-7 rats, NE content was increased in left cardiac ventricles compared with intact rats, but was not changed in MA, kidney, or spleen. Our data indicate that peripheral purinergic, but not adrenergic, neurotransmission increases following SCI via enhanced ATP release from periarterial nerves. Sympathetic BP support is reduced after SCI, but improving neurotransmitter release might maintain cardiovascular stability in individuals living with SCI.NEW & NOTEWORTHY This study revealed increased purinergic, but not noradrenergic, neurotransmission to mesenteric arteries in rats with spinal cord injury (SCI). An increased releasable pool of ATP in periarterial sympathetic nerves may contribute to autonomic dysreflexia following SCI, suggesting that purinergic neurotransmission may be a therapeutic target for maintaining stable blood pressure in individuals living with SCI. The selective increase in ATP release suggests that ATP and norepinephrine may be stored in separate synaptic vesicles in periarterial sympathetic varicosities.


Subject(s)
Mesenteric Arteries/innervation , Mesenteric Arteries/physiopathology , Receptors, Purinergic/metabolism , Spinal Cord Injuries/physiopathology , Synaptic Transmission , Adenosine Triphosphate/metabolism , Animals , Blood Pressure , Bradycardia/etiology , Bradycardia/physiopathology , Excitatory Postsynaptic Potentials , Male , Norepinephrine/metabolism , Paraplegia/physiopathology , Quadriplegia/physiopathology , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/physiopathology , Tachycardia/etiology , Tachycardia/physiopathology
14.
Nat Chem Biol ; 19(8): 922-927, 2023 08.
Article in English | MEDLINE | ID: mdl-37430113
15.
Nucleic Acids Res ; 46(7): 3458-3467, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29438559

ABSTRACT

Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.


Subject(s)
DNA, Mitochondrial/metabolism , Mitochondria/genetics , Oxidative Stress/genetics , Purine Nucleosides/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , DNA Adducts/genetics , DNA Adducts/metabolism , DNA, Mitochondrial/genetics , Electron Transport/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Lipid Peroxidation/genetics , Mice , Mice, Transgenic , Mitochondria/pathology , Mutagenesis/genetics , Oxidants/pharmacology , Purine Nucleosides/biosynthesis , Reactive Oxygen Species/chemistry , Superoxides/metabolism
16.
J Lipid Res ; 60(2): 360-374, 2019 02.
Article in English | MEDLINE | ID: mdl-30482805

ABSTRACT

Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.


Subject(s)
Homeostasis , Lysophospholipids/metabolism , Signal Transduction , Thiolester Hydrolases/metabolism , Amino Acid Sequence , Cell Differentiation , Cell Line , Gene Knockout Techniques , Humans , Hydrolysis , Models, Molecular , Neurons/cytology , Protein Conformation , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/deficiency , Thiolester Hydrolases/genetics
17.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G132-G143, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30359082

ABSTRACT

The irritable bowel syndrome (IBS) is a functional gastrointestinal motor and visceral sensation disorder that is more common in women than men. Female serotonin transporter (SERT)-gene knockout (KO) rats exhibit hypersensitivity to colorectal balloon distention (CRD) that mimics colonic hypersensitivity occurring in female IBS patients. Alosetron (5-HT3 receptor antagonist) is used to treat diarrhea-predominant IBS in female patients. Other 5-HT3 receptor antagonists are ineffective at treating IBS symptoms. The visceromotor response (VMR) to CRD in SERT-KO and wild-type (WT) rats was measured following subcutaneous (sc), intracerobroventricular (icv), or intrathecal (it) treatment with 5-HT3 receptor antagonists and an agonist. Alosetron (sc) and granisetron (antagonists) caused a paradoxical increase in the VMR to CRD in SERT-KO female rats. Alosetron (sc) increased the VMR to CRD in WT male rats. Alosetron (it) increased the VMR to CRD in SERT-KO female rats only, and the 5-HT3 receptor agonist SR-52772 increased the VMR to CRD in SERT-KO male rats. Depletion of spinal 5-HT using 5,7-dihydroxytryptamine prevented the increase in VMR to CRD in SERT-KO female and male rats treated it with alosetron and SR-52772, respectively. Alosetron (icv) did not affect the VMR to CRD in WT or KO female rats, but it increased the VMR in male SERT-KO but not WT male rats. These data suggest that 5-HT3 receptor signaling at the dorsal spinal cord mediates visceral hypersensitivity in female SERT-KO rats. Such differences could facilitate development of sex-specific drug treatments for visceral pain. NEW & NOTEWORTHY We studied a model of female sex-specific visceral hypersensitivity using rats that had a loss of function of the serotonin transporter (SERT) caused by gene truncation. Female SERT-KO rats exhibited visceral hypersensitivity in response to colorectal balloon distention. We found that increased 5-HT signaling at dorsal spine 5-HT3 receptors was responsible for visceral hypersensitivity in female but not male SERT-KO rats.


Subject(s)
Carbolines/pharmacology , Hypersensitivity/genetics , Receptors, Serotonin, 5-HT3/drug effects , Serotonin/metabolism , Sex Factors , Animals , Disease Models, Animal , Humans , Hyperalgesia/physiopathology , Hypersensitivity/drug therapy , Irritable Bowel Syndrome/physiopathology , Rats, Transgenic , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Plasma Membrane Transport Proteins/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Visceral Pain/physiopathology
18.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G569-G579, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31411893

ABSTRACT

Propulsion of luminal content along the gut requires coordinated contractions and relaxations of gastrointestinal smooth muscles controlled by the enteric nervous system. Activation of excitatory motor neurons (EMNs) causes muscle contractions, whereas inhibitory motor neuron (IMN) activation causes muscle relaxation. EMNs release acetylcholine (ACh), which acts at muscarinic receptors on smooth muscle cells and adjacent interstitial cells of Cajal, causing excitatory junction potentials (EJPs). IMNs release ATP (or another purine) and nitric oxide to cause inhibitory junction potentials (IJPs) and muscle relaxation. We used commercially available choline acetyltransferase (ChAT)-channelrhodopsin-2 (ChR2)-yellow fluorescent protein (YFP) bacterial artificial chromosome (BAC) transgenic mice, which express ChR2 in cholinergic neurons, to study cholinergic neuromuscular transmission in the colon. Intracellular microelectrodes were used to record IJPs and EJPs from circular muscle cells. We used blue light stimulation (BLS, 470 nm, 20 mW/mm2) and electrical field stimulation (EFS) to activate myenteric neurons. EFS evoked IJPs only, whereas BLS evoked EJPs and IJPs. Mecamylamine (10 µM, nicotinic cholinergic receptor antagonist) reduced BLS-evoked IJPs by 50% but had no effect on electrically evoked IJPs. MRS 2179 (10 µM, a P2Y1 receptor antagonist) blocked BLS-evoked IJPs. MRS 2179 and Nω-nitro-l-arginine (100 µM, nitric oxide synthase inhibitor) isolated the EJP, which was blocked by scopolamine (1 µM, muscarinic ACh receptor antagonist). Immunohistochemistry revealed ChAT expression in ~88% of enhanced YFP (eYFP)-expressing neurons, whereas 12% of eYFP neurons expressed nitric oxide synthase. These data show that cholinergic interneurons synapse with EMNs and IMNs to cause contraction and relaxation of colonic smooth muscle.NEW & NOTEWORTHY Electrical stimulation of interganglionic connectives has been used widely to study synaptic transmission in the enteric nervous system. However, electrical stimulation will activate many types of neurons and nerve fibers, which complicates data interpretation. Optogenetic activation of enteric neurons using genetically modified mice expressing channelrhodopsin-2 in cholinergic neurons offers a new approach that provides more specificity for nerve stimulation when studying myenteric plexus nerve circuitry.


Subject(s)
Choline O-Acetyltransferase/metabolism , Colon/physiology , Neuromuscular Junction/metabolism , Synaptic Potentials , Animals , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Choline O-Acetyltransferase/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Colon/innervation , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Muscle Contraction , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Neuromuscular Junction/physiology , Optogenetics
19.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G314-G332, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31188623

ABSTRACT

ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.


Subject(s)
Adenosine Triphosphatases/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Colitis/drug therapy , Colon/metabolism , Dextran Sulfate/pharmacology , Animals , Colitis/metabolism , Colon/drug effects , Female , Male , Mice , Mice, Knockout
20.
Chem Res Toxicol ; 32(5): 794-795, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30521321

ABSTRACT

Histone modifications regulate chromatin structure and function. Primary and secondary metabolites stemming from environmental and chemical exposures may play a critical role in the underlying epigenomic state of a cell through covalent histone modifications. Future investigations should be focused on characterizing the "Histone Code" when performing toxicogenomic analyses.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Toxicology , Animals , Chromatin/genetics , Epigenesis, Genetic , Histone Code , Histones/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL