Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Cell ; 155(1): 121-34, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074865

ABSTRACT

The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , Animals , Cell Differentiation , DNA Methyltransferase 3A , Enhancer of Zeste Homolog 2 Protein , Germ Cells/metabolism , Histones/metabolism , Homeodomain Proteins/genetics , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/metabolism , Transcription Factors/genetics , DNA Methyltransferase 3B
2.
FASEB J ; 36(7): e22401, 2022 07.
Article in English | MEDLINE | ID: mdl-35726676

ABSTRACT

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Snail Family Transcription Factors/metabolism , Activating Transcription Factor 3/metabolism , Cell Differentiation , Cell Line , Fibroblast Growth Factors , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Promoter Regions, Genetic/genetics , Up-Regulation
3.
Chembiochem ; 23(1): e202100449, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34647400

ABSTRACT

The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.


Subject(s)
Receptors, Retinoic Acid/metabolism , Rhodopsin/metabolism , Click Chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Receptors, Retinoic Acid/chemistry , Rhodopsin/chemistry , Stereoisomerism
4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163075

ABSTRACT

Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.


Subject(s)
Bone Morphogenetic Proteins/antagonists & inhibitors , Chromatography, Affinity/methods , Intercellular Signaling Peptides and Proteins/metabolism , Recombinant Proteins/pharmacology , Vascular Endothelial Growth Factor Receptor-2/agonists , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/isolation & purification , Recombinant Proteins/genetics
5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830297

ABSTRACT

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Signal Transduction/genetics , rhoA GTP-Binding Protein/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Polarity/genetics , Cells, Cultured , Humans , Membrane Glycoproteins/genetics , Phosphorylation/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-crk/metabolism , RNA Interference , Receptors, Complement/genetics , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
6.
Int J Mol Sci ; 22(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435325

ABSTRACT

Oxidative stress plays a key role in the pathophysiology of retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, which are the major causes of irreversible blindness in developed countries. An excess of reactive oxygen species (ROS) can directly cause functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells. Antioxidants may represent a preventive/therapeutic strategy and reduce the risk of progression of AMD. Among antioxidants, N-acetyl-L-cysteine (NAC) is widely studied and has been proposed to have therapeutic benefit in treating AMD by mitigating oxidative damage in RPE. Here, we demonstrate that N-acetyl-L-cysteine ethyl ester (NACET), a lipophilic cell-permeable cysteine derivative, increases the viability in oxidative stressed RPE cells more efficiently than NAC by reacting directly and more rapidly with oxidizing agents, and that NACET, but not NAC, pretreatment predisposes RPE cells to oxidative stress resistance and increases the intracellular reduced glutathione (GSH) pool available to act as natural antioxidant defense. Moreover, we demonstrate the ability of NACET to increase GSH levels in rats' eyes after oral administration. In conclusion, even if experiments in AMD animal models are still needed, our data suggest that NACET may play an important role in preventing and treating retinal diseases associated with oxidative stress, and may represent a valid and more efficient alternative to NAC in therapeutic protocols in which NAC has already shown promising results.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cysteine/analogs & derivatives , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Acetylcysteine/analogs & derivatives , Animals , Antioxidants/chemistry , Cell Line , Cysteine/chemistry , Cysteine/pharmacology , Humans , Male , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism
7.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445590

ABSTRACT

Leucine-rich a-2-glycoprotein 1 (LRG1) is a candidate therapeutic target for treating the neovascular form of age-related macular degeneration (nvAMD). In this study we examined the expression of LRG1 in eyes of nvAMD patients. Choroidal neovascular membranes (CNVMs) from patients who underwent submacular surgery for retinal pigment epithelium-choroid graft transplantation were collected from 5 nvAMD patients without any prior intravitreal anti-VEGF injection, and from six patients who received intravitreal anti-VEGF injections before surgery. As controls free of nvAMD, retina sections were obtained from the eyes resected from a patient with lacrimal sac tumor and from a patient with neuroblastoma. CNVMs were immunostained for CD34, LRG1, and α-smooth muscle actin (α-SMA). Aqueous humor samples were collected from 58 untreated-naïve nvAMD patients prior to the intravitreal injection of anti-VEGF and 51 age-matched cataract control patients, and LRG1 concentration was measured by ELISA. The level of LRG1 immunostaining is frequently high in both the endothelial cells of the blood vessels, and myofibroblasts in the surrounding tissue of CNVMs of treatment-naïve nvAMD patients. Furthermore, the average concentration of LRG1 was significantly higher in the aqueous humor of nvAMD patients than in controls. These observations provide a strong experimental basis and scientific rationale for the progression of a therapeutic anti-LRG1 monoclonal antibody into clinical trials with patients with nvAMD.


Subject(s)
Choroidal Neovascularization/diagnosis , Eye/pathology , Glycoproteins/metabolism , Macular Degeneration/diagnosis , Age Factors , Aged , Aged, 80 and over , Case-Control Studies , Choroidal Neovascularization/metabolism , Eye/metabolism , Female , Humans , Macular Degeneration/metabolism , Male , Middle Aged
8.
Int J Mol Sci ; 21(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023063

ABSTRACT

We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects. The miRNAs validated in AH were then evaluated in single assay in plasma. Gene Ontology (GO) analysis was conducted. From AH profiling, 119 mature miRNAs were detected: 86 in the DME group, 113 in the D group and 107 in the CTR group. miRNA underexpression in the DME group was confirmed in single assay for let-7c-5p, miR-200b-3p, miR-199a-3p and miR-365-3p. Of these four, miR-199a-3p and miR-365-3p were downregulated also in the plasma of the DME group. GO highlighted 54 validated target genes of miR-199a-3p, miR-200b-3p and miR-365-3p potentially implied in DME pathogenesis. Although more studies are needed, miR-200b-3p, let-7c-5p, miR-365-3p and miR-199a-3p represent interesting molecules in the study of DME pathogenesis.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Macular Edema/genetics , MicroRNAs/genetics , Aged , Aged, 80 and over , Aqueous Humor/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Retinopathy/pathology , Female , Gene Expression Regulation/genetics , Humans , Macular Edema/pathology , Male , Middle Aged
9.
J Cell Sci ; 130(6): 1110-1121, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28154159

ABSTRACT

Sustained signalling at the immune synapse (IS) requires the synaptic delivery of recycling endosome-associated T cell antigen receptors (TCRs). IFT20, a component of the intraflagellar transport system, controls TCR recycling to the IS as a complex with IFT57 and IFT88. Here, we used quantitative mass spectrometry to identify additional interaction partners of IFT20 in Jurkat T cells. In addition to IFT57 and IFT88, the analysis revealed new binding partners, including IFT54 (also known as TRAF3IP1), GMAP-210 (also known as TRIP11), Arp2/3 complex subunit-3 (ARPC3), COP9 signalosome subunit-1 (CSN1, also known as GPS1) and ERGIC-53 (also known as LMAN1). A direct interaction between IFT20 and both IFT54 and GMAP-210 was confirmed in pulldown assays. Confocal imaging of antigen-specific conjugates using T cells depleted of these proteins by RNA interference showed that TCR accumulation and phosphotyrosine signalling at the IS were impaired in the absence of IFT54, ARPC3 or ERGIC-53. Similar to in IFT20-deficient T cells, this defect resulted from a reduced ability of endosomal TCRs to polarize to the IS despite a correct translocation of the centrosome towards the antigen-presenting cell contact. Our data underscore the traffic-related role of an IFT20 complex that includes components of the intracellular trafficking machinery in IS assembly.


Subject(s)
Carrier Proteins/metabolism , Immunological Synapses/metabolism , Protein Interaction Maps , T-Lymphocytes/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Cytoskeletal Proteins , Endocytosis , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Mannose-Binding Lectins/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Nuclear Proteins/metabolism , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Transferrin/metabolism
10.
Cell Commun Signal ; 17(1): 55, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138217

ABSTRACT

BACKGROUND: In the endothelium, the single-pass membrane protein CD93, through its interaction with the extracellular matrix protein Multimerin-2, activates signaling pathways that are critical for vascular development and angiogenesis. Trafficking of adhesion molecules through endosomal compartments modulates their signaling output. However, the mechanistic basis coordinating CD93 recycling and its implications for endothelial cell (EC) function remain elusive. METHODS: Human umbilical vein ECs (HUVECs) and human dermal blood ECs (HDBEC) were used in this study. Fluorescence confocal microscopy was employed to follow CD93 retrieval, recycling, and protein colocalization in spreading cells. To better define CD93 trafficking, drug treatments and transfected chimeric wild type and mutant CD93 proteins were used. The scratch assay was used to evaluate cell migration. Gene silencing strategies, flow citometry, and quantification of migratory capability were used to determine the role of Rab5c during CD93 recycling to the cell surface. RESULTS: Here, we identify the recycling pathway of CD93 following EC adhesion and migration. We show that the cytoplasmic domain of CD93, by its interaction with Moesin and F-actin, is instrumental for CD93 retrieval in adhering and migrating cells and that aberrant endosomal trafficking of CD93 prevents its localization at the leading edge of migration. Moreover, the small GTPase Rab5c turns out to be a key component of the molecular machinery that is able to drive CD93 recycling to the EC surface. Finally, in the Rab5c endosomal compartment CD93 forms a complex with Multimerin-2 and active ß1 integrin, which is recycled back to the basolaterally-polarized cell surface by clathrin-independent endocytosis. CONCLUSIONS: Our findings, focusing on the pro-angiogenic receptor CD93, unveil the mechanisms of its polarized trafficking during EC adhesion and migration, opening novel therapeutic opportunities for angiogenic diseases.


Subject(s)
Blood Proteins/metabolism , Cell Adhesion , Cell Movement , Integrin beta1/metabolism , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , rab5 GTP-Binding Proteins/metabolism , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans
11.
Int J Mol Sci ; 19(11)2018 Oct 27.
Article in English | MEDLINE | ID: mdl-30373226

ABSTRACT

The multifunctional transforming growth factors-beta (TGF-ßs) have been extensively studied regarding their role in the pathogenesis of neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Despite this, their effect remains somewhat controversial. Indeed, both pro- and antiangiogenic activities have been suggested for TGF-ß signaling in the development and progression of nAMD, and opposite therapies have been proposed targeting the inhibition or activation of the TGF-ß pathway. The present article summarizes the current literature linking TGF-ß and nAMD, and reviews experimental data supporting both pro- and antiangiogenic hypotheses, taking into account the limitations of the experimental approaches.


Subject(s)
Macular Degeneration/metabolism , Transforming Growth Factor beta/metabolism , Animals , Humans , Macular Degeneration/etiology , Neovascularization, Physiologic , Retinal Neurons/metabolism
12.
J Cell Physiol ; 232(7): 1767-1773, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27859225

ABSTRACT

In patients with age-related macular degeneration (AMD), choroidal neovascularization is the major cause of severe visual loss. In these patients, the persistence of neovascular growth despite vascular endothelial growth factor-A blockage needs the discovery of new endothelial cell targets. The glycoprotein CD93, highly expressed in activated endothelial cells, has been recently involved in the regulation of the angiogenic process both as transmembrane and soluble protein. Choroidal neovascular membranes from patients affected by AMD were examined by immunofluorescence using anti-CD93 and anti-von Willebrand factor antibodies. Blood vessels within intraocular and extraocular neoplasias were used as controls for CD93 expression. All choroidal neovascular membranes displayed strong CD93 staining in the von Willebrand factor-positive endothelial cells, consistently with the analyses showing a high colocalization coefficient in the blood vessels. Intraocular and extraocular tumor vessels showed similar results, whereas the normal choroid displayed blood vessels with only faint CD93 staining. Additionally, the concentration of soluble CD93 was determined in the aqueous humor of patients affected by naïve neovascular AMD by enzyme-linked immunosorbent assays. Age-matched cataract patients served as controls. Soluble CD93 was significantly increased in the aqueous humor of naïve neovascular AMD patients and tended to decrease after treatment with an antiangiogenic drug. In conclusion, both transmembrane and soluble CD93 are overexpressed in patients with neovascular AMD, indicating that CD93 may represent a potential new antiangiogenic target in the treatment of choroidal neovascularization. J. Cell. Physiol. 232: 1767-1773, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Choroidal Neovascularization/metabolism , Macular Degeneration/metabolism , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Aged , Aged, 80 and over , Aqueous Humor/metabolism , Blood Vessels/metabolism , Blood Vessels/pathology , Case-Control Studies , Choroidal Neovascularization/pathology , Female , Humans , Immunohistochemistry , Macular Degeneration/pathology , Male , Retinal Pigment Epithelium/metabolism , Solubility
13.
Anal Biochem ; 538: 38-41, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28939006

ABSTRACT

We have introduced protein thiolation index (PTI), i.e. the molar ratio of the sum of all low molecular mass thiols bound to plasma proteins to protein free cysteinyl residues, as a sensitive biomarker of oxidative stress. According to the original procedure its determination requires a rapid separation of plasma and a specific treatment of samples to stabilize thiols. Here we demonstrate that samples can be collected without use of any anticoagulant to prevent blood clotting and without any stabilization of thiols too. This simplification of the determination of PTI makes its analysis more feasible also in routine clinical laboratories.


Subject(s)
Biomarkers/blood , Blood Chemical Analysis/methods , Blood Proteins/metabolism , Oxidative Stress , Spectrophotometry , Sulfhydryl Compounds/blood , Adult , Aged , Blood Coagulation , Blood Proteins/chemistry , Female , Humans , Male , Middle Aged , Smoking , Young Adult
14.
Nucleic Acids Res ; 43(14): 6814-26, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-25925565

ABSTRACT

Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.


Subject(s)
DNA-Binding Proteins/genetics , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 2/metabolism , Proto-Oncogene Proteins/genetics , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/metabolism , Down-Regulation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mixed Function Oxygenases , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic
15.
Stem Cells ; 33(3): 742-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25504116

ABSTRACT

Although much is known about the pluripotency self-renewal circuitry, the molecular events that lead embryonic stem cells (ESCs) exit from pluripotency and begin differentiation are largely unknown. We found that the zinc finger transcription factor Snai1, involved in gastrulation and epithelial-mesenchymal transition, is already expressed in the inner cell mass of the preimplantation blastocysts. In ESCs, Snai1 does not respond to TGFß or BMP4 signaling but it is induced by retinoic acid treatment, which induces the binding, on the Snai1 promoter, of the retinoid receptors RARγ and RXRα, the dissociation of the Polycomb repressor complex 2 which results in the decrease of H3K27me3, and the increase of histone H3K4me3. Snai1 mediates the repression of pluripotency genes by binding directly to the promoters of Nanog, Nr5a2, Tcl1, c-Kit, and Tcfcp2l1. The transient activation of Snai1 in embryoid bodies induces the expression of the markers of all three germ layers. These results suggest that Snai1 is a key factor that triggers ESCs exit from the pluripotency state and initiate their differentiation processes.


Subject(s)
Embryonic Stem Cells/physiology , Pluripotent Stem Cells/physiology , Transcription Factors/genetics , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Nanog Homeobox Protein , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Snail Family Transcription Factors , Transcription Factors/biosynthesis , Transcription Factors/metabolism , Tretinoin/pharmacology
16.
J Inherit Metab Dis ; 39(6): 801-806, 2016 11.
Article in English | MEDLINE | ID: mdl-27671890

ABSTRACT

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of AKU treatment is palliative and little is known about its physiopathology. Neovascularization is involved in the pathogenesis of systemic inflammatory rheumatic diseases, a family of related disorders that includes AKU. Here, we investigated the presence of neoangiogenesis in AKU synovium and healthy controls. Synovium from AKU patients, who had undergone total joint replacement or arthroscopy, or from healthy patients without any history of rheumatic diseases, who underwent surgical operation following sport trauma was subjected to hematoxylin and eosin staining. Histologic grades were assigned for clinical disease activity and synovitis based on cellular content of the synovium. By immunofluorescence microscopy, using different endothelial cell markers, we observed large vascularization in AKU but not in healthy synovium. Moreover, Western blotting and quantification analyses confirmed strong expression of endothelial cell markers in AKU synovial tissues. Importantly, AKU synovium vascular endothelium expressed high levels of ß-dystroglycan, a protein previously involved in the regulation of angiogenesis in osteoarthritic synovium. This is the first report providing experimental evidences that new blood vessels are formed in AKU synovial tissues, opening new perspectives for AKU therapy.


Subject(s)
Alkaptonuria/pathology , Neovascularization, Pathologic/pathology , Alkaptonuria/metabolism , Biomarkers/metabolism , Case-Control Studies , Dystroglycans/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Synovial Membrane/pathology
17.
Thromb Haemost ; 124(2): 122-134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37669782

ABSTRACT

BACKGROUND: The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS: Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS: The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbß3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION: These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.


Subject(s)
Receptors, Thrombin , Thrombin , Animals , Mice , Blood Platelets/metabolism , Platelet Activation , Platelet Aggregation , Receptor, PAR-1/metabolism , Receptors, Thrombin/genetics , Receptors, Thrombin/metabolism , Thrombin/metabolism
18.
Oncogene ; 43(22): 1701-1713, 2024 May.
Article in English | MEDLINE | ID: mdl-38600165

ABSTRACT

Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Triple Negative Breast Neoplasms , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Humans , Female , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cysteine/metabolism , Epithelial-Mesenchymal Transition/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Gene Expression Regulation, Neoplastic , Cell Survival/genetics
19.
Redox Biol ; 72: 103131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555711

ABSTRACT

Oxidation processes in mitochondria and different environmental insults contribute to unwarranted accumulation of reactive oxygen species (ROS). These, in turn, rapidly damage intracellular lipids, proteins, and DNA, ultimately causing aging and several human diseases. Cells have developed different and very effective systems to control ROS levels. Among these, removal of excessive amounts is guaranteed by upregulated expression of various antioxidant enzymes, through activation of the NF-E2-Related Factor 2 (NRF2) protein. Here, we show that Mitogen Activated Protein Kinase 15 (MAPK15) controls the transactivating potential of NRF2 and, in turn, the expression of its downstream target genes. Specifically, upon oxidative stress, MAPK15 is necessary to increase NRF2 expression and nuclear translocation, by inducing its activating phosphorylation, ultimately supporting transactivation of cytoprotective antioxidant genes. Lungs are continuously exposed to oxidative damages induced by environmental insults such as air pollutants and cigarette smoke. Interestingly, we demonstrate that MAPK15 is very effective in supporting NRF2-dependent antioxidant transcriptional response to cigarette smoke of epithelial lung cells. Oxidative damage induced by cigarette smoke indeed represents a leading cause of disability and death worldwide by contributing to the pathogenesis of different chronic respiratory diseases and lung cancer. Therefore, the development of novel therapeutic strategies able to modulate cellular responses to oxidative stress would be highly beneficial. Our data contribute to the necessary understanding of the molecular mechanisms behind such responses and identify new potentially actionable targets.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Gene Expression Regulation , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , Animals , Humans , Mice , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Phosphorylation , Reactive Oxygen Species/metabolism , Transcriptional Activation , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism
20.
Int J Biol Macromol ; 224: 453-464, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36265539

ABSTRACT

Blocking the signaling activated by the plasma membrane receptor CD93 has recently been demonstrated a useful tool in antiangiogenic treatment and oncotherapy. In the proliferating endothelium, CD93 regulates cell adhesion, migration, and vascular maturation, yet it is unclear how CD93 interacts with the extracellular matrix activating signaling pathways involved in the vascular remodeling. Here for the first time we show that in endothelial cells CD93 is structured as a dimer and that this oligomeric form is physiologically instrumental for the binding of CD93 to its ligand Multimerin-2. Crystallographic X-ray analysis of recombinant CD93 reveals the crucial role played by the C-type lectin-like and sushi-like domains in arranging as an antiparallel dimer to achieve a functional binding state, providing key information for the future design of new drugs able to hamper CD93 function in neovascular pathologies.


Subject(s)
Endothelial Cells , Membrane Glycoproteins , Endothelial Cells/metabolism , Membrane Glycoproteins/metabolism , Lectins, C-Type/metabolism , Dimerization
SELECTION OF CITATIONS
SEARCH DETAIL