Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cancer Immunol Immunother ; 71(4): 979-987, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34467417

ABSTRACT

Venetoclax treatment has demonstrated efficacy and a safety profile in chronic lymphocytic leukemia (CLL) patients, however the emergence of resistant cells is a current complication. We and others, previously reported that the activation of CLL cells by signals that mimic microenvironment stimuli favors the upregulation of anti-apoptotic proteins from B cell lymphoma-2 (BCL-2) family that are not targeted by venetoclax, reducing malignant cell sensitivity to the drug. We here studied venetoclax-resistant CLL cells generated in vitro by autologous activated T lymphocytes, and found that they showed an aggressive phenotype characterized by increased expression of activation and proliferation markers. Moreover, surviving cells expressed high levels of B cell lymphoma-extra-large (BCL-XL) and/or myeloid cell leukemia-1 (MCL-1), and a sustained resistance to a second treatment with the drug. Interestingly, the spleen tyrosine kinase (SYK) inhibitor entospletinib, and the phosphoinositide 3-kinase delta (PI3Kδ) inhibitor idelalisib, reduced T cell activation, impaired the generation of leukemic cells with this aggressive phenotype, and were able to restore CLL sensitivity to venetoclax. Our data highlight a novel combination to overcome resistance to venetoclax in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Sulfonamides , Tumor Microenvironment
2.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Article in English | MEDLINE | ID: mdl-32055920

ABSTRACT

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Subject(s)
Carbolines/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/drug effects , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Survival/drug effects , Cell Survival/immunology , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Primary Cell Culture , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/immunology
3.
Int J Cancer ; 144(5): 1128-1134, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30178523

ABSTRACT

Reprogramming of neutrophils by malignant cells is well-described for many types of solid tumors, but data remain scarce for hematological diseases. Chronic lymphocytic leukemia (CLL) is characterized for a deep immune dysregulation mediated by leukemic cells that compromises patient's outcome. Murine models of CLL highlight the relevance of myeloid cells as tumor-driven reprogramming targets. In our study, we evaluated neutrophil reprogramming by CLL cells. We first show that the proportion of the CD16high CD62Ldim neutrophil subset in peripheral blood of CLL patients is increased compared to age-matched healthy donors (HD). In vitro, neutrophils from HD cultured in the presence of CLL cells or conditioned media (CM) from CLL cells exhibited a longer lifespan. Depletion of G-CSF and GM-CSF from CM partially reversed the protective effect. In addition, the proportion of viable neutrophils that displayed a CD16high CD62Ldim phenotype was increased in the presence of CM from CLL cells, being TGF-ß/IL-10 responsible for this effect. Altogether, our results describe a novel mechanism through which CLL cells can manipulate neutrophils.


Subject(s)
Cell Differentiation/physiology , Immune Tolerance/physiology , L-Selectin/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Neutrophils/pathology , Receptors, IgG/metabolism , Aged , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Neutrophils/metabolism , Transforming Growth Factor beta/metabolism
4.
Cancer Immunol Immunother ; 66(1): 77-89, 2017 01.
Article in English | MEDLINE | ID: mdl-27796477

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by immune defects that contribute to a high rate of infections and autoimmune cytopenias. Neutrophils are the first line of innate immunity and respond to pathogens through multiple mechanisms, including the release of neutrophil extracellular traps (NETs). These web-like structures composed of DNA, histones, and granular proteins are also produced under sterile conditions and play important roles in thrombosis and autoimmune disorders. Here we show that neutrophils from CLL patients are more prone to release NETs compared to those from age-matched healthy donors (HD). Increased generation of NETs was not due to higher levels of elastase, myeloperoxidase, or reactive oxygen species production. Instead, we found that plasma from CLL patients was able to prime neutrophils from HD to generate higher amounts of NETs upon activation. Plasmatic IL-8 was involved in the priming effect since its depletion reduced plasma capacity to enhance NETs release. Finally, we found that culture with NETs delayed spontaneous apoptosis and increased the expression of activation markers on leukemic B cells. Our study provides new insights into the immune dysregulation in CLL and suggests that the chronic inflammatory environment typical of CLL probably underlies this inappropriate neutrophil priming.


Subject(s)
Extracellular Traps/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Neutrophils/immunology , Aged , Aged, 80 and over , Case-Control Studies , Humans , Interleukin-8/immunology , Middle Aged
5.
Cancer Immunol Immunother ; 66(4): 461-473, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28011996

ABSTRACT

Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.


Subject(s)
Indazoles/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrophages/immunology , Oxazines/pharmacology , Pyrazines/pharmacology , Pyridines/pharmacology , Syk Kinase/antagonists & inhibitors , T-Lymphocytes/drug effects , ZAP-70 Protein-Tyrosine Kinase/metabolism , Aged , Aged, 80 and over , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , Lymphocyte Activation/drug effects , Male , Middle Aged , Phagocytosis/drug effects , Phosphorylation/drug effects , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Rituximab/pharmacology , T-Lymphocytes/immunology
6.
J Immunol ; 193(6): 3165-74, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25127862

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the progressive accumulation of clonal B lymphocytes. Proliferation occurs in lymphoid tissues upon interaction of leukemic cells with a supportive microenvironment. Therefore, the mobilization of tissue-resident CLL cells into the circulation is a useful therapeutic strategy to minimize the reservoir of tumor cells within survival niches. Because the exit of normal lymphocytes from lymphoid tissues depends on the presence of sphingosine-1 phosphate (S1P) and the regulated expression of S1P receptor-1 (S1PR1), we investigated whether the expression and function of S1PR1 can be modulated by key microenvironment signals. We found that activation of CLL cells with CXCL12, fibroblast CD40L(+), BCR cross-linking, or autologous nurse-like cells reduces their S1PR1 expression and the migratory response toward S1P. Moreover, we found that S1PR1 expression was reduced in the proliferative/activated subset of leukemic cells compared with the quiescent subset from the same patient. Similarly, bone marrow-resident CLL cells expressing high levels of the activation marker CD38 showed a lower expression of S1PR1 compared with CD38(low) counterparts. Finally, given that treatment with BCR-associated kinase inhibitors induces a transient redistribution of leukemic cells from lymphoid tissues to circulation, we studied the effect of the Syk inhibitors piceatannol and R406 on S1PR1 expression and function. We found that they enhance S1PR1 expression in CLL cells and their migratory response toward S1P. Based on our results, we suggest that the regulated expression of S1PR1 might modulate the egress of the leukemic clone from lymphoid tissues.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lysophospholipids/immunology , Oxazines/pharmacology , Pyridines/pharmacology , Receptors, Lysosphingolipid/immunology , Sphingosine/analogs & derivatives , Stilbenes/pharmacology , ADP-ribosyl Cyclase 1/biosynthesis , Adult , Aged , Aged, 80 and over , Animals , B-Lymphocytes , CD40 Ligand/biosynthesis , Cell Movement , Chemokine CXCL12/biosynthesis , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lysophospholipids/biosynthesis , Male , Membrane Glycoproteins/biosynthesis , Mice , Middle Aged , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-bcr/biosynthesis , Receptors, CXCR4 , Receptors, Lysosphingolipid/biosynthesis , Sphingosine/biosynthesis , Sphingosine/immunology , Sphingosine-1-Phosphate Receptors , Syk Kinase , Tumor Cells, Cultured , Tumor Microenvironment
9.
Cancer Immunol Immunother ; 62(1): 113-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22842611

ABSTRACT

Activated T cells from patients with chronic lymphocytic leukemia (CLL) provide survival and proliferative signals to the leukemic clone within lymphoid tissues. Recruitment of both, CLL cells and T lymphocytes, to this supportive microenvironment greatly depends on CXCL12 production by stromal and myeloid cells. CXCL12 also supplies survival stimuli to leukemic B cells, but whether it exerts stimulatory effects on T lymphocytes from CLL patients is unknown. In order to evaluate the capacity of CXCL12 to increase CD4(+) T cell activation and proliferation in CLL patients, peripheral blood mononuclear cells were cultured with or without recombinant human CXCL12 or autologous nurse-like cells, and then T cell activation was induced by anti-CD3 mAb. CXCL12 increases the proliferation and the expression of CD25, CD69, CD154, and IFNγ on CD3-stimulated CD4(+) T cells from CLL patients, similarly in T cells from ZAP-70(+) to ZAP-70(-) patients. Autologous nurse-like cells establish a close contact with CD4(+) T cells and increase their activation and proliferation partially through a CXCR4-dependent mechanism. In addition, we found that activated T cells in the presence of CXCL12 enhance the activation and proliferation of the leukemic clone. In conclusion, CXCL12 production by lymphoid tissue microenvironment in CLL patients might play a key dual role on T cell physiology, functioning not only as a chemoattractant but also as a costimulatory factor for activated T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemokine CXCL12/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation/immunology , Antigens, CD/biosynthesis , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation , Cell Separation , Chemokine CXCL12/metabolism , Flow Cytometry , Humans , Immunophenotyping , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Microscopy, Confocal
10.
Haematologica ; 103(10): e458-e461, 2018 10.
Article in English | MEDLINE | ID: mdl-29748439
11.
Front Oncol ; 13: 1143881, 2023.
Article in English | MEDLINE | ID: mdl-37020867

ABSTRACT

The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.

12.
Invest New Drugs ; 30(5): 1830-40, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21887502

ABSTRACT

Aplidin is a novel cyclic depsipeptide, currently in Phase II/III clinical trials for solid and hematologic malignancies. The aim of this study was to evaluate the effect of Aplidin in chronic lymphocytic leukemia (CLL), the most common leukemia in the adult. Although there have been considerable advances in the treatment of CLL over the last decade, drug resistance and immunosuppression limit the use of current therapy and warrant the development of novel agents. Here we report that Aplidin induced a dose- and time-dependent cytotoxicity on peripheral blood mononuclear cells (PBMC) from CLL patients. Interestingly, Aplidin effect was markedly higher on monocytes compared to T lymphocytes, NK cells or the malignant B-cell clone. Hence, we next evaluated Aplidin activity on nurse-like cells (NLC) which represent a cell subset differentiated from monocytes that favors leukemic cell progression through pro-survival signals. NLC were highly sensitive to Aplidin and, more importantly, their death indirectly decreased neoplasic clone viability. The mechanisms of Aplidin-induced cell death in monocytic cells involved activation of caspase-3 and subsequent PARP fragmentation, indicative of death via apoptosis. Aplidin also showed synergistic activity when combined with fludarabine or cyclophosphamide. Taken together, our results show that Aplidin affects the viability of leukemic cells in two different ways: inducing a direct effect on the malignant B-CLL clone; and indirectly, by modifying the microenvironment that allows tumor growth.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Depsipeptides/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukocytes, Mononuclear/drug effects , Monocytes/drug effects , Monocytes/pathology , Aged , Aged, 80 and over , Apoptosis/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Cyclophosphamide/administration & dosage , Depsipeptides/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Monocytes/metabolism , Peptides, Cyclic , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
14.
Eur J Haematol ; 87(1): 80-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21443542

ABSTRACT

OBJECTIVE: Richter's transformation of B-cell chronic lymphocytic leukemia (CLL) to cutaneous diffuse large B-cell lymphoma (DLBCL) is very rare. We took the advantage of one of these cases to test the hypothesis that the chemokine receptor CCR4 is involved in the homing of CLL cells to skin. PATIENTS AND METHODS: We evaluated CCR4 expression by flow cytometry in both circulating and skin CD19(+) leukemic cells from a patient with cutaneous DLBCL. As controls, we used peripheral blood samples from CLL patients without skin manifestations and from elderly healthy donors. RESULTS: We found that both DLBCL cells derived from the original CLL clone and circulating CLL cells from this patient expressed CCR4. Although it was previously reported that CCR4 is not expressed in CLL cells, we found that a low but significant proportion of leukemic cells from CLL patients with no skin manifestations do express CCR4. There was a positive correlation between the expression of CCR4 and the percentage of ZAP-70 of each sample. Moreover, we consistently observed a higher expression of CCR4 within CD19(+)CD38(+) and CD19(+)Ki67(+) subsets compared to CD19(+)CD38(-) and CD19(+)Ki67(-) lymphocytes from the same sample, respectively. CONCLUSION: We conclude that the chemokine receptor CCR4 is not a special feature of CLL cells with skin manifestation, but rather it is expressed in a low but significant proportion of peripheral blood CLL cells.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Receptors, CCR4/metabolism , Skin Neoplasms/immunology , Aged , Aged, 80 and over , Antigens, CD19/blood , Antigens, CD19/metabolism , Case-Control Studies , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Receptors, CCR4/blood , Skin/immunology , Skin/metabolism , Skin/pathology , Skin Neoplasms/blood , Skin Neoplasms/pathology , ZAP-70 Protein-Tyrosine Kinase/blood , ZAP-70 Protein-Tyrosine Kinase/metabolism
15.
Sci Rep ; 11(1): 12926, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155276

ABSTRACT

Hypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Subject(s)
Immunoglobulins, Intravenous/immunology , Immunomodulation , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunoglobulins, Intravenous/pharmacology , Immunomodulation/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Sulfonamides/pharmacology
16.
Front Oncol ; 11: 598319, 2021.
Article in English | MEDLINE | ID: mdl-34381700

ABSTRACT

Current standard treatment of patients with hairy cell leukemia (HCL), a chronic B-cell neoplasia of low incidence that affects the elderly, is based on the administration of purine analogs such as cladribine. This chemotherapy approach shows satisfactory responses, but the disease relapses, often repeatedly. Venetoclax (ABT-199) is a Bcl-2 inhibitor currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) in adult patients ineligible for intensive chemotherapy. Given that HCL cells express Bcl-2, our aim was to evaluate venetoclax as a potential therapy for HCL. We found that clinically relevant concentrations of venetoclax (0.1 and 1 µM) induced primary HCL cell apoptosis in vitro as measured by flow cytometry using Annexin V staining. As microenvironment induces resistance to venetoclax in CLL, we also evaluated its effect in HCL by testing the following stimuli: activated T lymphocytes, stromal cells, TLR-9 agonist CpG, and TLR-2 agonist PAM3. We found decreased levels of venetoclax-induced cytotoxicity in HCL cells exposed for 48 h to any of these stimuli, suggesting that leukemic B cells from HCL patients are sensitive to venetoclax, but this sensitivity can be overcome by signals from the microenvironment. We propose that the combination of venetoclax with drugs that target the microenvironment might improve its efficacy in HCL.

17.
Haematologica ; 95(5): 768-75, 2010 May.
Article in English | MEDLINE | ID: mdl-20145264

ABSTRACT

BACKGROUND: T cells from patients with chronic lymphocytic leukemia may play an important role in contributing to the onset, sustenance, and exacerbation of the disease by providing survival and proliferative signals to the leukemic clone within lymph nodes and bone marrow. DESIGN AND METHODS: By performing chemotaxis assays towards CXCL12, CCL21 and CCL19, we sought to evaluate the migratory potential of T cells from chronic lymphocytic leukemia patients. We next analyzed the chemokine-induced migration of T cells, dividing the chronic lymphocytic leukemia samples according to their expression of the poor prognostic factors CD38 and ZAP-70 in leukemic cells determined by flow cytometry. RESULTS: We found that T cells from patients with chronic lymphocytic leukemia are less responsive to CXCL12, CCL21 and CCL19 than T cells from healthy adults despite similar CXCR4 and CCR7 expression. Following separation of the patients into two groups according to ZAP-70 expression, we found that T cells from ZAP-70-negative samples showed significantly less migration towards CXCL12 compared to T cells from ZAP-70-positive samples and that this was not due to defective CXCR4 down-regulation, F-actin polymerization or to a lesser expression of ZAP-70, CD3, CD45, CD38 or CXCR7 on these cells. Interestingly, we found that leukemic cells from ZAP-70-negative samples seem to be responsible for the defective CXCR4 migratory response observed in their T cells. CONCLUSIONS: Impaired migration towards CXCL12 may reduce the access of T cells from ZAP-70-negative patients to lymphoid organs, creating a less favorable microenvironment for leukemic cell survival and proliferation.


Subject(s)
Cell Migration Inhibition/physiology , Chemokine CXCL12/physiology , Chemotaxis, Leukocyte/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , T-Lymphocytes/pathology , ZAP-70 Protein-Tyrosine Kinase/biosynthesis , Adult , Aged , Aged, 80 and over , Coculture Techniques , Female , Humans , Male , Middle Aged , Tumor Cells, Cultured
19.
J Immunol ; 181(5): 3674-83, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18714043

ABSTRACT

The mechanisms underlying the frequent association between chronic lymphocytic leukemia (CLL) and autoimmune hemolytic anemia are currently unclear. The erythrocyte protein band 3 (B3) is one of the most frequently targeted Ags in autoimmune hemolytic anemia. In this study, we show that CLL cells specifically recognize B3 through a still unidentified receptor. B3 interaction with CLL cells involves the recognition of its N-terminal domain and leads to its internalization. Interestingly, when binding of erythrocyte-derived vesicles as found physiologically in blood was assessed, we observed that CLL cells could only interact with inside-out vesicles, being this interaction strongly dependent on the recognition of the N-terminal portion of B3. We then examined T cell responses to B3 using circulating CLL cells as APCs. Resting B3-pulsed CLL cells were unable to induce T cell proliferation. However, when deficient costimulation was overcome by CD40 engagement, B3-pulsed CLL cells were capable of activating CD4(+) T cells in a HLA-DR-dependent fashion. Therefore, our work shows that CLL cells can specifically bind, capture, and present B3 to T cells when in an activated state, an ability that could allow the neoplastic clone to trigger the autoaggressive process against erythrocytes.


Subject(s)
Anemia, Hemolytic, Autoimmune , Anion Exchange Protein 1, Erythrocyte/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Aged , Antigen-Presenting Cells , Cell Proliferation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation , Middle Aged , Protein Binding , T-Lymphocytes/immunology
20.
Leuk Lymphoma ; 61(10): 2409-2418, 2020 10.
Article in English | MEDLINE | ID: mdl-32306816

ABSTRACT

Ibrutinib is a BTK/ITK inhibitor with efficacy for the treatment of various lymphoid cancers, including CLL. Considering that innate and adaptative immune defects are a dominant feature of CLL patients, we evaluated whether in vitro ibrutinib affects the survival and function of neutrophils and γδ T cells, key players of the early immune response against microbes. Neutrophils and γδ T cells were obtained from peripheral blood of healthy donors and CLL patients. We found that ibrutinib reduces the production of reactive oxygen species (ROS) and bacteria killing capacity, and slightly impairs neutrophil extracellular traps (NETs) production without affecting bacteria-uptake and CD62L-downregulation induced by fMLP or aggregated IgG. In addition, ibrutinib reduces γδ T cell activation and CD107a degranulation induced by phosphoantigens or anti-CD3. These findings are in agreement with previous data suggesting that ibrutinib interferes with the protective immune response to pathogens, particularly Mycobacteria and Aspergillus.


Subject(s)
Neutrophils , T-Lymphocytes , Adenine/analogs & derivatives , Humans , Lymphocyte Activation , Piperidines , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL