Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Pharm Dev Technol ; 29(5): 395-414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618690

ABSTRACT

The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.


Subject(s)
Excipients , Technology, Pharmaceutical , Excipients/chemistry , Technology, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Industry/methods
2.
Drug Dev Ind Pharm ; 41(1): 163-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24171692

ABSTRACT

The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.


Subject(s)
Chemistry, Pharmaceutical/methods , Compressive Strength , Tablets/chemistry , Drug Compounding/methods , Tablets/analysis
3.
Drug Dev Ind Pharm ; 41(5): 825-37, 2015 May.
Article in English | MEDLINE | ID: mdl-24738790

ABSTRACT

Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.


Subject(s)
Excipients/chemistry , Ibuprofen/administration & dosage , Lubricants/chemistry , Stearic Acids/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Liberation , Ibuprofen/chemistry , Particle Size , Povidone/chemistry , Powders , Solubility , Tablets , Tensile Strength
4.
Int J Pharm ; 609: 121150, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34600060

ABSTRACT

Changes of weight and axial expansion of tablets of the deliquescent drug pyridostigmine bromide with Kollidon SR were followed with relative humidity (RH) using dynamic vapor sorption and displacement transducer. The effects of RH on placebo and drug containing (API) tablets prepared at low and high compression were related to tablet strength and molecular changes. Tablet weight and expansion increased with RH, especially above RH 40%. Tablet rigidity and strength decreased linearly with moisture for placebo tablets whereas for API tablets there was decrease up to 50% followed by large drop at 60%. Raman spectra of tablets did not show chemical interactions due to moisture, but decreased intensity of drug peak at 2370 cm-1 indicating solid state changes. Decrease of polymer peak intensities at 805 and 1740 cm-1 occurred only in API tablets implicating drug deliquescence in polymer moisture sorption. X-ray diffraction and thermal analysis of tablets indicated complete drug liquefaction after exposure at 60% RH, which impacted great loss of strength but did not affect the sustained release profile. In conclusion, monitoring of the physical properties of tablets during production of deliquescent drugs is necessary to avoid pitfalls during downstream processes such as coating, packaging and storage.


Subject(s)
Pyridostigmine Bromide , Drug Liberation , Humidity , Tablets , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL