Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.444
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38980375

ABSTRACT

Structural variation (SV) is an important form of genomic variation that influences gene function and expression by altering the structure of the genome. Although long-read data have been proven to better characterize SVs, SVs detected from noisy long-read data still include a considerable portion of false-positive calls. To accurately detect SVs in long-read data, we present SVDF, a method that employs a learning-based noise filtering strategy and an SV signature-adaptive clustering algorithm, for effectively reducing the likelihood of false-positive events. Benchmarking results from multiple orthogonal experiments demonstrate that, across different sequencing platforms and depths, SVDF achieves higher calling accuracy for each sample compared to several existing general SV calling tools. We believe that, with its meticulous and sensitive SV detection capability, SVDF can bring new opportunities and advancements to cutting-edge genomic research.


Subject(s)
Algorithms , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Genomic Structural Variation , Software
3.
Proc Natl Acad Sci U S A ; 120(2): e2217493120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598938

ABSTRACT

In response to DNA damage, bacterial RecA protein forms filaments with the assistance of DinI protein. The RecA filaments stimulate the autocleavage of LexA, the repressor of more than 50 SOS genes, and activate the SOS response. During the late phase of SOS response, the RecA filaments stimulate the autocleavage of UmuD and λ repressor CI, leading to mutagenic repair and lytic cycle, respectively. Here, we determined the cryo-electron microscopy structures of Escherichia coli RecA filaments in complex with DinI, LexA, UmuD, and λCI by helical reconstruction. The structures reveal that LexA and UmuD dimers bind in the filament groove and cleave in an intramolecular and an intermolecular manner, respectively, while λCI binds deeply in the filament groove as a monomer. Despite their distinct folds and oligomeric states, all RecA filament binders recognize the same conserved protein features in the filament groove. The SOS response in bacteria can lead to mutagenesis and antimicrobial resistance, and our study paves the way for rational drug design targeting the bacterial SOS response.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , SOS Response, Genetics , Cryoelectron Microscopy , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Rec A Recombinases/metabolism
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741268

ABSTRACT

Anhedonia is a transdiagnostic symptom and associated with a spectrum of reward deficits among which the motivational dysfunction is poorly understood. Previous studies have established the abnormal cost-benefit trade-off as a contributor to motivational deficits in anhedonia and its relevant psychiatric diseases. However, it remains elusive how the anhedonic neural dynamics underlying reward processing are modulated by effort expenditure. Using an effort-based monetary incentive delay task, the current event-related potential study examined the neural dynamics underlying the effort-reward interplay in anhedonia using a nonclinical sample who scored high or low on an anhedonia questionnaire. We found that effort prospectively decreased reward effect on the contingent variation negativity and the target-P3 but retrospectively enhanced outcome effect on the feedback-P3 following effort expenditure. Compared to the low-anhedonia group, the high-anhedonia group displayed a diminished effort effect on the target-P3 during effort expenditure and an increased effort-enhancement effect for neutral trials during the feedback-P3 period following effort expenditure. Our findings suggest that anhedonia is associated with an inefficient control and motivation allocation along the efforted-based reward dynamics from effort preparation to effort production.


Subject(s)
Anhedonia , Motivation , Reward , Anhedonia/physiology , Humans , Male , Female , Young Adult , Motivation/physiology , Electroencephalography , Adult , Evoked Potentials/physiology , Brain/physiology , Adolescent
5.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39191665

ABSTRACT

Metabolic syndrome exhibits associations with diverse neurological disorders, and its potential influence on the cerebral cortex may be one of the many potential factors contributing to these adverse outcomes. In this study, we aimed to investigate the causal relationship between metabolic syndrome and changes in cerebral cortex structure using Mendelian randomization analysis. Genome-wide association study data for the 5 components of metabolic syndrome were obtained from individuals of European descent in the UK Biobank. Genome-wide association study data for 34 known cortical functional regions were sourced from the ENIGMA Consortium. Data on Alzheimer's disease, major depression, and anxiety disorder were obtained from the IEU Open genome-wide association study database. The causal links between metabolic syndrome elements and cerebral cortex architecture were evaluated using inverse variance weighting, Mendelian randomization-Egger, and weighted median techniques, with inverse variance weighting as the primary method. Inverse variance weighting, Mendelian randomization Egger, weighted median, simple mode, and weighted mode methods were employed to assess the relationships between metabolic syndrome and neurological diseases (Alzheimer's disease, major depression, and anxiety disorder). Outliers, heterogeneity, and pleiotropy were assessed using Cochran's Q test, MR-PRESSO, leave-one-out analysis, and funnel plots. Globally, no causal link was found between metabolic syndrome and overall cortical thickness or surface area. However, regionally, metabolic syndrome may influence the surface area of specific regions, including the caudal anterior cingulate, postcentral, posterior cingulate, rostral anterior cingulate, isthmus cingulate, superior parietal, rostral middle frontal, middle temporal, insula, pars opercularis, cuneus, and inferior temporal. It may also affect the thickness of the medial orbitofrontal, caudal middle frontal, paracentral, superior frontal, superior parietal, and supramarginal regions. These findings were nominally significant and withstood sensitivity analyses, showing no substantial heterogeneity or pleiotropy. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. This study suggests a potential association between metabolic syndrome and changes in cerebral cortex structure, which may underlie certain neurological disorders. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. Early diagnosis of metabolic syndrome holds significance in preventing these neurological disorders.


Subject(s)
Cerebral Cortex , Genome-Wide Association Study , Mendelian Randomization Analysis , Metabolic Syndrome , Humans , Metabolic Syndrome/genetics , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Female , Male , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Depressive Disorder, Major/genetics , Polymorphism, Single Nucleotide
6.
Nucleic Acids Res ; 51(4): 1843-1858, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688327

ABSTRACT

The discovery of new, active DNA transposons can expand the range of genetic tools and provide more options for genomic manipulation. In this study, a bioinformatics analysis suggested that Passer (PS) transposons, which are members of the pogo superfamily, show signs of recent and current activity in animals and may be active in some species. Cell-based transposition assays revealed that the native PS transposases from Gasterosteus aculeatus and Danio rerio displayed very high activity in human cells relative to the Sleeping Beauty transposon. A typical overproduction inhibition phenomenon was observed for PS, and transposition capacity was decreased by ∼12% with each kilobase increase in the insertion size. Furthermore, PS exhibited a pronounced integration preference for genes and their transcriptional regulatory regions. We further show that two domesticated human proteins derived from PS transposases have lost their transposition activity. Overall, PS may represent an alternative with a potentially efficient genetic manipulation tool for transgenesis and mutagenesis applications.


Subject(s)
DNA Transposable Elements , Fishes , Genetic Techniques , Animals , Humans , Fishes/genetics , Gene Transfer Techniques , Transposases/genetics
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012976

ABSTRACT

COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Models, Theoretical , SARS-CoV-2/immunology , Seasons , Vaccination/methods , Algorithms , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Pandemics/prevention & control , Patient Admission/statistics & numerical data , SARS-CoV-2/physiology , Survival Rate , United States/epidemiology , Vaccination/statistics & numerical data
8.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072195

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Subject(s)
Gain of Function Mutation , STAT1 Transcription Factor , Stem Cells , Humans , Mutation , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Stem Cells/immunology , Stem Cells/metabolism
9.
J Am Chem Soc ; 146(1): 410-418, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38154093

ABSTRACT

Under the control of chiral ligand glutathione and in the presence of hexadecyltrimethylammonium bromide, Au deposition on Au seeds is known to give chiral nanostructures. We have previously shown that the protruding chiral patterns, as opposed to flat facets, are likely caused by active surface growth, where nonuniform ligand coverage could be responsible for the focused growth at a few active sites. By pushing the limit of such a growth mode, here, we use decahedral seeds to prepare homochiral nanopropellers with intricate patterns of deep valleys and protruding ridges. Control experiments show that the focused growth depends on the rates of Au deposition by changing either the seed concentration or the reductant concentration, consistent with the proposed mechanism. The dynamic growth competition between the ligand-deficient active sites and the ligand-rich surfaces gradually focuses the growth onto a few active sites, causing the expansion of grooves, squeezing of steep ridges, and a surprising 36° rotation of the pentagonal outline. The imbalanced deposition on the prochiral slopes is responsible for the tilted grooves, the twisted walls, and thus the well-separated and distorted blades, which become the origin of the chiroptical responses.

10.
J Am Chem Soc ; 146(19): 13588-13597, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695646

ABSTRACT

Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.


Subject(s)
Cell Membrane Permeability , Ion Channel Gating , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Ionic Liquids/chemistry , Ionic Liquids/metabolism , Models, Molecular , Protein Structure, Tertiary , Water/chemistry , Cell Line
11.
J Gene Med ; 26(2): e3669, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380717

ABSTRACT

BACKGROUND: This study investigated the role of the ferroptosis-related gene FTH1 in oral squamous cell carcinoma (OSCC) and evaluated the therapeutic potential of baicalin in OSCC cell treatment. METHODS: A prognostic model was established by bioinformatic analysis, consisting of 12 ferroptosis related genes (FRGs), and FTH1 was selected as the most significantly up-regulated FRGs. The clinical correlation of FTH1 in OSCC samples was evaluated by both immunohistochemical and bioinformatic characterizations. The effects of FTH1 on migration, invasion, epithelial-mesenchymal transition (EMT) and proliferation were determined by wound healing assays, transwell assays, western blotting and 5'-ethynl 2'-deoxyuridine proliferation assays, respectively. The effects of FTH1 on ferroptosis were tested via ferroptosis markers and Mito Tracker staining. In addition, the therapeutic effects of baicalin on OSCC cells were confirmed using EMT, migration, invasion, proliferation and ferroptosis assays. RESULTS: The 12 FRGs were predictive of the prognosis for OSCC patients, and FTH1 expression was identified as significantly up-regulated in OSCC samples, which was highly associated with survival, immune cell infiltration and drug sensitivity. Moreover, knocking down FTH1 inhibited cell proliferation, EMT and invasive phenotypes, but induced ferroptosis in OSCC cells (Cal27 and SCC25). Furthermore, baicalin directly suppressed expression of FTH1 in OSCC cells, and effectively promoted ferroptosis and inhibited the proliferation as well as EMT by directly targeting FTH1. CONCLUSIONS: This study has demonstrated that FTH1 is a therapeutic target for OSCC treatment, and has provided evidence that baicalin offers a promising alternative for OSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Flavonoids , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Ferroptosis/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement , Ferritins , Oxidoreductases
12.
Small ; 20(10): e2305641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37914667

ABSTRACT

As a remarkable structure, 2D magnetic heterojunctions have attracted researchers' attention owing to their controlled manipulation in the electronic device. However, successful fabrication as well as modulation of their structure and compound remain challenging. Herein, a novel method is designed to obtain a CoCl2 /Co3 O4 heterojunction on Si/SiO2 substrate with the assistance of supercritical CO2 (SC CO2 ), and the as-fabricated sample has significantly increased coercivity and saturation magnetization, which is 11 times higher than pure Co3 O4 . Further, it can be found that the CO2 pressure has the decisive effect on the saturation magnetization of the sample. Therefore, it suggests that the tunable electronic-magnetic device can be anticipated to be obtained in the future.

13.
Small ; 20(13): e2308427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37967321

ABSTRACT

Self-trapped excitons (STEs) typically give broadband photoluminescence emission with a large Stokes shift, which is important for the enhancement of the optical properties of materials. Here, low-dimensional La-doped BaTiO3 nanocrystals with defects are prepared using supercritical CO2 (SC CO2). The generation of the STEs is facilitated by doping La3+ ions and introducing CO2 pressure, which effectively enhance the luminescence intensity of BaTiO3. This discovery shows that the La ion doping concentration can modulate the photoluminescence of BaTiO3 nanocrystals under pressure. This work deepens the understanding of the influence of rare-earth-doped luminescent materials under pressure and provides insight to improve the capabilities of optical devices.

14.
Small ; 20(16): e2308187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38016073

ABSTRACT

Spintronic devices work by manipulating the spin of electrons other than charge transfer, which is of revolutionary significance and can largely reduce energy consumption in the future. Herein, ultrathin two-dimensional (2D) non-van der Waals (non-vdW) γ-Ga2O3 with room temperature ferromagnetism is successfully obtained by using supercritical CO2 (SC CO2). The stress effect of SC CO2 under different pressures selectively modulates the orientation and strength of covalent bonds, leading to the change of atomic structure including lattice expansion, introduction of O vacancy, and transition of Ga-O coordination (GaO4 and GaO6). Magnetic measurements show that pristine γ-Ga2O3 is nonferromagnetic, whereas the SC CO2 treated γ-Ga2O3 exhibits obvious ferromagnetic behavior with an optimal magnetization of 0.025 emu g-1 and a Curie temperature of 300 K.

15.
J Transl Med ; 22(1): 705, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080767

ABSTRACT

During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.


Subject(s)
B7-H1 Antigen , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Glycosylation , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/diagnosis , Neoplasms/therapy , Neoplasms/pathology , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Molecular Targeted Therapy
16.
J Transl Med ; 22(1): 829, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252063

ABSTRACT

BACKGROUND: CT-detected Extramural venous invasion (EMVI) is known as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). However, the molecular basis is not clear. In colorectal cancer, M2 macrophages plays a vital role in determining EMVI. This study aimed to investigate the relationship between CT-detected EMVI and the M2 macrophages as well as prognosis predictionusing a radiogenomic approach. METHOD: We utilized EMVI-related genes (from mRNA sequencing of 13 GC samples correlated with EMVI score by spearman analysis, P < 0.01) to overlap the co-expression genes of WGCNA module and M2 macrophages related genes (from mRNA data of 371 GC patients in TCGA database), generating a total of 136 genes. An EMVI-M2-prognosis-related hub gene signature was constructed by COX and least absolute shrinkage and selection operator (LASSO) analysis from a training cohort TCGA database (n = 371) and validated it in a validation cohort from GEO database (n = 357). High- and low-risk groups were divided by hub gene (EGFLAM and GNG11) signature-derived risk scores. We assessed its predictive ability through Kaplan-Meier (K-M) curve and COX analysis. Furthermore, we utilized ESTIMATE to detect tumor mutation burden (TMB) and evaluate sensitivity to immune checkpoint inhibitors (ICIs). Expression of hub genes was tested using western blotting and immunohistochemistry (IHC) analysis. RESULTS: The overall survival (OS) was significantly reduced in the high-risk group (Training/Validation: AUC = 0.701/0.620; P < 0.001/0.003). Furthermore, the risk score was identified as an independent predictor of OS in multivariate COX regression analyses (Training/Validation: HR = 1.909/1.928; 95% CI: 1.225-2.974/1.308-2.844). The low-risk group exhibited significantly higher TMB levels (P = 1.6e- 07) and greater sensitivity to ICIs. Significant higher expression of hub-genes was identified on multiple GC cell lines and original samples. Hub-genes knockdown in gastric cancer cell lines inhibited their proliferation, metastatic and invasive capacity to varying degrees. In vivo experiments indicate that EGFLAM, as one of the hub genes, its high expression can serve as a biomarker for low response to immunotherapy. CONCLUSION: Our study demonstrated EMVI-M2 gene signature could effectively predict the prognosis of GC tissue, reflecting the relationship between EMVI and M2 macrophages.


Subject(s)
Gene Expression Regulation, Neoplastic , Macrophages , Neoplasm Invasiveness , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Female , Prognosis , Middle Aged , Tomography, X-Ray Computed , Kaplan-Meier Estimate , Survival Analysis , Transcriptome/genetics , Animals , Cell Line, Tumor , Gene Expression Profiling , Reproducibility of Results , Aged
17.
J Med Virol ; 96(1): e29380, 2024 01.
Article in English | MEDLINE | ID: mdl-38235849

ABSTRACT

Hepatic venous pressure gradient (HVPG) is the gold standard for evaluating clinically significant portal hypertension (CSPH). However, reliable noninvasive methods are limited. Our study aims to investigate the diagnostic value of serum Golgi protein 73 (GP73) for CSPH in patients with compensated cirrhosis. The study enrolled 262 consecutive patients with compensated cirrhosis from three centers in China from February 2021 to September 2023, who underwent both serum GP73 tests and HVPG measurements. CSPH was defined as HVPG ≥ 10 mmHg. Diagnostic accuracy was evaluated using the areas under the receiver operating characteristic curve (AUC). The prevalence of CSPH was 56.9% (n = 149). There were significant differences between the CSPH and non-CSPH groups in the median serum GP73 level (126.8 vs. 73.1 ng/mL, p < 0.001). GP73 level showed a significant positive linear correlation with HVPG (r = 0.459, p < 0.001). The AUC for the diagnosis of CSPH using serum GP73 alone was 0.75 (95% confidence interval [CI] 0.68-0.81). Multivariate logistic regression analysis determined that the levels of GP73, platelets and international normalized ratio were independently associated with CSPH. The combination of these three markers was termed "IP73" score with an AUC value of 0.85 (95% CI 0.80-0.89) for CSPH. Using 0 as a cut-off value, the specificity and sensitivity of IP73 score were 77.9% and 81.9%, respectively. The IP73 score offers a novel, simple and noninvasive method of assessing CSPH in patients with compensated cirrhosis. A cut-off value of the IP73 score at 0 can distinguish patients with or without CSPH.


Subject(s)
Elasticity Imaging Techniques , Hypertension, Portal , Humans , Biomarkers , Hypertension, Portal/complications , Hypertension, Portal/diagnosis , Liver , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , ROC Curve , Time Factors
18.
Opt Express ; 32(10): 16777-16789, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858875

ABSTRACT

Applications of the type-I fiber Bragg gratings (FBGs) written through the coating (TTC) in strain sensing and tunable distributed Bragg reflector (DBR) fiber lasers were demonstrated. We reported the principle of selecting the distance between the fiber and the phase mask when writing type-I TTC FBGs. Type-I TTC FBGs written in commercially available acrylate-coated fibers with various geometries and their strain responses were demonstrated. Results showed that the strain sensitivity of FBGs increases as the core-diameter decreases, probably due to the waveguide effect. In addition, a continuously tunable DBR fiber laser based on TTC FBGs was achieved with a wavelength tuning range of 19.934 nm around 1080 nm, by applying a strain of 0-21265.8 µÉ› to the laser resonant cavity. The wavelength tuning range was limited by the splice point between the gain fiber and the passive fiber for transmitting pump and signal lasers. When the pump power was 100 mW, the relative intensity noises were -97.334 dB/Hz at the relaxation oscillation peak of 880 kHz and -128 dB/Hz at frequencies greater than 3 MHz. The results open a potential scheme to design and implement continuously tunable fiber lasers and fiber laser sensors for strain sensing with a higher resolution.

19.
Mol Psychiatry ; 28(11): 4853-4866, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37737484

ABSTRACT

Exposure to preadult environmental exposures may have long-lasting effects on mental health by affecting the maturation of the brain and personality, two traits that interact throughout the developmental process. However, environment-brain-personality covariation patterns and their mediation relationships remain unclear. In 4297 healthy participants (aged 18-30 years), we combined sparse multiple canonical correlation analysis with independent component analysis to identify the three-way covariation patterns of 59 preadult environmental exposures, 760 adult brain imaging phenotypes, and five personality traits, and found two robust environment-brain-personality covariation models with sex specificity. One model linked greater stress and less support to weaker functional connectivity and activity in the default mode network, stronger activity in subcortical nuclei, greater thickness and volume in the occipital, parietal and temporal cortices, and lower agreeableness, consciousness and extraversion as well as higher neuroticism. The other model linked higher urbanicity and better socioeconomic status to stronger functional connectivity and activity in the sensorimotor network, smaller volume and surface area and weaker functional connectivity and activity in the medial prefrontal cortex, lower white matter integrity, and higher openness to experience. We also conducted mediation analyses to explore the potential bidirectional mediation relationships between adult brain imaging phenotypes and personality traits with the influence of preadult environmental exposures and found both environment-brain-personality and environment-personality-brain pathways. We finally performed moderated mediation analyses to test the potential interactions between macro- and microenvironmental exposures and found that one category of exposure moderated the mediation pathways of another category of exposure. These results improve our understanding of the effects of preadult environmental exposures on the adult brain and personality traits and may facilitate the design of targeted interventions to improve mental health by reducing the impact of adverse environmental exposures.


Subject(s)
Brain , Personality , Adult , Humans , Neuroticism , Brain Mapping , Environmental Exposure
20.
Langmuir ; 40(31): 15996-16029, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39041346

ABSTRACT

Lithium-sulfur (Li-S) batteries are promising energy storage devices owing to their high theoretical specific capacity and energy density. However, several challenges, including volume expansion, slow reaction kinetics, polysulfide shuttle effect and lithium dendrite formation, hinder their commercialization. Separators are a key component of Li-S batteries. Traditional separators, made of polypropylene and polyethylene, have certain limitations that should be addressed. Therefore, this review discusses the basic properties and mechanisms of Li-S battery separators, focuses on preparing different functionalized separators to mitigate the shuttle effect of polysulfides. This review also introduces future research trends, emphasizing the potential of separator functionalization in advancing the Li-S battery technology.

SELECTION OF CITATIONS
SEARCH DETAIL