Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
BMC Biol ; 21(1): 67, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013528

ABSTRACT

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Subject(s)
Ictaluridae , Humans , Animals , Male , Female , Ictaluridae/genetics , Chromosome Inversion , Genetic Linkage , Genome , Chromosome Mapping
2.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628283

ABSTRACT

Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination. Differentially methylated CpG sites (DMCs) were predominantly identified on the sex chromosome, most notably within the sex determination region (SDR), although the overall methylation profiles across the entire genome were similar between genetic males and females. The drastic differences in methylation were located within the SDR at nucleotide position 14.0-20.3 Mb of the sex chromosome, making this region an epigenetically marked locus within the sex determination region. Most of the differentially methylated CpG sites were hypermethylated in females and hypomethylated in males, suggesting potential involvement of methylation modification in sex determination in channel catfish. Along with the differential methylation in the SDR, a number of differentially expressed genes within the SDR were also identified between genetic males and females, making them potential candidate genes for sex determination and differentiation in channel catfish.


Subject(s)
Ictaluridae , Animals , Female , Genome , Male , Sex Chromosomes , Sex Determination Analysis , Y Chromosome
3.
Proc Natl Acad Sci U S A ; 115(22): E5018-E5027, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760055

ABSTRACT

Barbels are important sensory organs in teleosts, reptiles, and amphibians. The majority of ∼4,000 catfish species, such as the channel catfish (Ictalurus punctatus), possess abundant whisker-like barbels. However, barbel-less catfish, such as the bottlenose catfish (Ageneiosus marmoratus), do exist. Barbeled catfish and barbel-less catfish are ideal natural models for determination of the genomic basis for barbel development. In this work, we generated and annotated the genome sequences of the bottlenose catfish, conducted comparative and subtractive analyses using genome and transcriptome datasets, and identified differentially expressed genes during barbel regeneration. Here, we report that chemokine C-C motif ligand 33 (ccl33), as a key regulator of barbel development and regeneration. It is present in barbeled fish but absent in barbel-less fish. The ccl33 genes are differentially expressed during barbel regeneration in a timing concordant with the timing of barbel regeneration. Knockout of ccl33 genes in the zebrafish (Danio rerio) resulted in various phenotypes, including complete loss of barbels, reduced barbel sizes, and curly barbels, suggesting that ccl33 is a key regulator of barbel development. Expression analysis indicated that paralogs of the ccl33 gene have both shared and specific expression patterns, most notably expressed highly in various parts of the head, such as the eye, brain, and mouth areas, supporting its role for barbel development.


Subject(s)
Chemokines/metabolism , Fish Proteins/metabolism , Sense Organs/growth & development , Animals , Catfishes/genetics , Catfishes/growth & development , Catfishes/metabolism , Chemokines/genetics , Chemokines/physiology , Fish Proteins/genetics , Fish Proteins/physiology , Gene Expression Profiling , Genome/genetics , Male , Sense Organs/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
4.
BMC Biol ; 17(1): 6, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683095

ABSTRACT

BACKGROUND: Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish. RESULTS: Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5 cM and physical distance of 8.9 Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene. CONCLUSIONS: We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene.


Subject(s)
Ictaluridae/genetics , Sex Determination Processes/genetics , Y Chromosome , Animals , Chromosome Mapping , Female , Genetic Linkage , Genome , Male , Sequence Analysis, DNA
5.
Fish Shellfish Immunol ; 91: 188-193, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31077849

ABSTRACT

Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.


Subject(s)
Alternative Splicing/immunology , Fish Diseases/immunology , Flavobacteriaceae Infections/veterinary , Ictaluridae , Transcription, Genetic/immunology , Animals , Fish Diseases/microbiology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/microbiology , Flavobacterium/physiology , Random Allocation
6.
Physiol Genomics ; 50(1): 67-76, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29167198

ABSTRACT

The swimbladder is an internal gas-filled organ in teleosts. Its major function is to regulate buoyancy. The swimbladder exhibits great variation in size, shape, and number of compartments or chambers among teleosts. However, genomic control of swimbladder variation is unknown. Channel catfish ( Ictalurus punctatus), blue catfish ( Ictalurus furcatus), and their F1 hybrids of female channel catfish × male blue catfish (C × B hybrid catfish) provide a good model in which to investigate the swimbladder morphology, because channel catfish possess a single-chambered swimbladder, whereas blue catfish possess a bichambered swimbladder; C × B hybrid catfish possess a bichambered swimbladder but with a significantly reduced posterior chamber. Here we determined the transcriptional profiles of swimbladder from channel catfish, blue catfish, and C × B hybrid catfish. We examined their transcriptomes at both the fingerling and adult stages. Through comparative transcriptome analysis, ~4,000 differentially expressed genes (DEGs) were identified. Among these DEGs, members of the Wnt signaling pathway ( wnt1, wnt2, nfatc1, rac2), Hedgehog signaling pathway ( shh), and growth factors ( fgf10, igf-1) were identified. As these genes were known to be important for branching morphogenesis of mammalian lung and of mammary glands, their association with budding of the posterior chamber primordium and progressive development of bichambered swimbladder in fish suggest that these branching morphogenesis-related genes and their functions in branching are evolutionarily conserved across a broad spectrum of species.


Subject(s)
Air Sacs/metabolism , Catfishes/genetics , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Male , Morphogenesis/genetics , Morphogenesis/physiology
7.
Physiol Genomics ; 50(8): 636-647, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29799804

ABSTRACT

Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.


Subject(s)
Air Sacs/metabolism , Gene Expression Profiling/methods , Ictaluridae/genetics , Oxygen/metabolism , Transcriptome , Animals , Fish Proteins/genetics , Hypoxia , Signal Transduction/genetics , Stress, Physiological
8.
BMC Genomics ; 19(1): 952, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572844

ABSTRACT

BACKGROUND: Walking catfish (Clarias batrachus) is a freshwater fish capable of air-breathing and locomotion on land. It usually inhabits various low-oxygen habitats, burrows inside the mudflat, and sometimes "walks" to search for suitable environments during summer. It has evolved accessory air-breathing organs for respiring air and corresponding mechanisms to survive in such challenging environments. Thereby, it serves as a great model for understanding adaptations to terrestrial life. RESULTS: Comparative genomics with channel catfish (Ictalurus punctatus) revealed specific adaptations of C. batrachus in DNA repair, enzyme activator activity, and small GTPase regulator activity. Comparative analysis with 11 non-air-breathing fish species suggested adaptive evolution in gene expression and nitrogenous waste metabolic processes. Further, myoglobin, olfactory receptor related to class A G protein-coupled receptor 1, and sulfotransferase 6b1 genes were found to be expanded in the air-breathing walking catfish genome, with 15, 15, and 12 copies, respectively, compared to non-air-breathing fishes that possess only 1-2 copies of these genes. Additionally, we sequenced and compared the transcriptomes of the gill and the air-breathing organ to characterize the mechanism of aerial respiration involved in elastic fiber formation, oxygen binding and transport, angiogenesis, ion homeostasis and acid-base balance. The hemoglobin genes were expressed dramatically higher in the air-breathing organ than in the gill of walking catfish. CONCLUSIONS: This study provides an important genomic resource for understanding the adaptive mechanisms of walking catfish to terrestrial environments. It is possible that the coupling of enhanced abilities for oxygen storage and oxygen transport through genomic expansion of myoglobin genes and transcriptomic up-regulation of hemoglobin and angiogenesis-related genes are important components of the molecular basis for adaptation of this aquatic species to terrestrial life.


Subject(s)
Catfishes/genetics , Gene Expression Profiling/veterinary , Genome , Gills/metabolism , Sequence Analysis, DNA/veterinary , Adaptation, Physiological , Animals , Catfishes/physiology , Gills/physiology , Respiration , Transcriptome
9.
Mol Genet Genomics ; 293(3): 587-599, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29230585

ABSTRACT

Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.


Subject(s)
Catfishes/growth & development , Fish Proteins/genetics , Genome-Wide Association Study/methods , Quantitative Trait Loci , Animals , Body Weight , Catfishes/genetics , Chromosome Mapping , Female , Genetic Linkage , Inbreeding , Male
10.
Mol Genet Genomics ; 293(5): 1107-1120, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29737402

ABSTRACT

Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.


Subject(s)
Catfishes/genetics , Disease Resistance , Edwardsiella ictaluri/physiology , Enterobacteriaceae Infections/veterinary , Fish Diseases/genetics , Genome-Wide Association Study , Sepsis/veterinary , Alleles , Animals , Catfishes/classification , Catfishes/growth & development , Catfishes/microbiology , Crosses, Genetic , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Genetic Linkage , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sepsis/genetics , Sepsis/immunology
11.
Mol Genet Genomics ; 293(6): 1365-1378, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29967962

ABSTRACT

Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.


Subject(s)
Catfishes/genetics , Disease Resistance/genetics , Edwardsiella ictaluri/immunology , Enterobacteriaceae Infections/genetics , Quantitative Trait Loci , Sepsis/genetics , Animals , Catfishes/immunology , Catfishes/microbiology , Enterobacteriaceae Infections/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Genetic Linkage , Genome-Wide Association Study , Ictaluridae/genetics , Ictaluridae/immunology , Ictaluridae/microbiology , Polymorphism, Single Nucleotide , Sepsis/immunology , Sepsis/veterinary
12.
Proc Natl Acad Sci U S A ; 111(18): 6744-9, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24753611

ABSTRACT

Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus--Jingmen tick virus (JMTV)--that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors.


Subject(s)
Flaviviridae/genetics , Genome, Viral , Ticks/virology , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cell Line , China , DNA, Viral/genetics , Dogs , Evolution, Molecular , Flaviviridae/classification , Flaviviridae/ultrastructure , Flavivirus/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , Proteomics , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/ultrastructure , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Viral Nonstructural Proteins/genetics
13.
J Virol ; 86(5): 2864-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22190717

ABSTRACT

Surveys were carried out to better understand the tick vector ecology and genetic diversity of Huaiyangshan virus (HYSV) in both regions of endemicity and regions of nonendemicity. Haemaphysalis longicornis ticks were dominant in regions of endemicity, while Rhipicephalus microplus is more abundant in regions of nonendemicity. HYSV RNA was found in human and both tick species, with greater prevalence in H. longicornis and lesser prevalence in R. microplus. Phylogenetic analyses indicate that HYSV is a novel species of the genus Phlebovirus.


Subject(s)
Arachnid Vectors/virology , Bunyaviridae Infections/virology , Bunyaviridae/classification , Bunyaviridae/genetics , Genetic Variation , Phylogeny , Rhipicephalus/virology , Animals , Bunyaviridae/isolation & purification , China , Ecosystem , Humans , Molecular Sequence Data
14.
Front Genet ; 13: 994471, 2022.
Article in English | MEDLINE | ID: mdl-36406125

ABSTRACT

Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.

15.
Sci Adv ; 8(51): eadc8786, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542716

ABSTRACT

The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.


Subject(s)
Genomic Imprinting , Ictaluridae , Male , Animals , Female , Ictaluridae/genetics , DNA Methylation , X Chromosome , Vertebrates
16.
Epigenetics ; 17(12): 1820-1837, 2022 12.
Article in English | MEDLINE | ID: mdl-35703353

ABSTRACT

Exogenous oestrogen 17ß-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.


Subject(s)
Estradiol , Feminization , Ictaluridae , Animals , Female , Male , Adrenergic Agents , DNA Methylation , Estradiol/pharmacology , Estrogens , Gonadotropin-Releasing Hormone
17.
Mar Biotechnol (NY) ; 24(1): 174-189, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35166964

ABSTRACT

Identification of genetic markers associated with resistance against enteric septicemia of catfish (ESC) is of great interest for genetic enhancement programs of catfish. In the present study, bulk segregant RNA-Seq analysis was applied to determine differentially expressed genes and alleles after ESC infection. Here we report three genomic regions on LG1, LG12, and LG26, containing significant single-nucleotide polymorphisms (SNPs). These genomic regions aligned well with quantitative trait loci (QTL) previously identified. Within the QTL regions, eleven genes were found to be differentially regulated between phenotypic bulks. Importantly, the QTL on linkage group 1 (LG1) were found to be expressed in the liver, whereas the QTL on LG12 and LG26 were expressed in the intestine, suggesting multiple mechanisms of ESC resistance. It is apparent that apolipoproteins may be important for ESC resistance as the QTL on LG1 included the 14-kDa apolipoprotein genes that are both allelically expressed and differentially expressed between the resistant and susceptible bulks. Traf2 and NCK-interacting protein kinase (TNIK) were found in the QTL on LG12, and it was downregulated in resistant fish, suggesting the importance of NCK downregulation in ESC resistance, as previously reported. In addition, we observed divergent gene expression patterns between the liver and intestine after infection. Immune/inflammatory-related processes were overrepresented from liver DEGs, while those DEGs identified from intestine were enriched for proteolysis and wounding processes. Taken together, the BSR-Seq analysis presented here advanced the knowledge of ESC resistance, providing information of not only positions of QTL but also genes and their differential expression between resistant and susceptible fish, making it one step closer to the identification of the causal genes for ESC resistance.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Ictaluridae , Animals , Edwardsiella ictaluri , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/genetics , Ictaluridae/genetics , RNA-Seq
18.
J Clin Microbiol ; 48(5): 1667-72, 2010 May.
Article in English | MEDLINE | ID: mdl-20335417

ABSTRACT

Feline immunodeficiency virus (FIV) is among the most common infectious agents of cats. Five well-characterized FIV subtypes, A, B, C, D, and E, are recognized worldwide. As in HIV diagnosis, serum antibodies against FIV classically serve as an indicator of infection status. After the introduction of an inactivated FIV vaccine, this approach has become problematic, since antibodies generated by vaccination are indistinguishable from antibodies in response to infection. However, PCR detection of host-cell-integrated FIV DNA will differentiate infection-derived antibody from vaccination-derived positivity because presumably the RNA of inactivated vaccine virus will not integrate into the host genome. In this study, we established a gag gene-based dual-emission fluorescence resonance energy transfer (FRET) real-time PCR that amplifies single-target copies of all known FIV strains and differentiates five FIV subtypes. All blood samples from experimentally FIV-infected cats (n=5) were antibody positive and highly positive in the FIV PCR. In contrast, nine cats became antibody positive after FIV vaccination but remained negative in the FIV PCR. Of 101 FIV antibody-positive feline blood specimens submitted for FIV PCR diagnosis, 61 were positive (60%). A total of 23 of the positive PCRs identified subtype A, 11 identified subtype B1, 11 identified subtype B2/E, and 16 identified subtype C. FIV subtype D was not detected in any submitted specimens even though 13 blood specimens were from cats known to have received the FIV vaccine, which contains FIV subtype A and D inactivated virions. Therefore, this PCR quantitatively identifies FIV subtypes and unambiguously discriminates between FIV-vaccinated and FIV-infected cats.


Subject(s)
Feline Acquired Immunodeficiency Syndrome/diagnosis , Fluorescence Resonance Energy Transfer/methods , Immunodeficiency Virus, Feline/classification , Immunodeficiency Virus, Feline/isolation & purification , Polymerase Chain Reaction/methods , Viral Vaccines , Animals , Antibodies, Viral/blood , Cats , Diagnosis, Differential , Feline Acquired Immunodeficiency Syndrome/virology , Genes, gag , Immunodeficiency Virus, Feline/genetics , RNA, Viral/blood
19.
Article in English | MEDLINE | ID: mdl-30952021

ABSTRACT

Polyadenylation plays important roles in gene expression regulation in eukaryotes, which typically involves cleavage and poly(A) tail addition at the polyadenylation site (PAS) of the pre-mature mRNA. Many eukaryotic genes contain more than one PASs, termed as alternative polyadenylation (APA). As a crucial post-transcriptional regulation, polyadenylation affects various aspects of RNA metabolism such as mRNA stability, translocation, and translation. However, polyadenylation has been rarely studied in teleosts. Here we conducted polyadenylation analysis in channel catfish, a commercially important aquaculture species around the world. Using RNA-Seq data, we identified 20,320 PASs which were classified into 14,500 clusters by merging adjacent PASs. Most of the PASs were found in 3' UTRs, followed by intron regions based on the annotation of channel catfish reference genome. No apparent difference in PAS distribution was observed between the sense and antisense strand of the channel catfish genome. The sequence analysis of nucleotide composition and motif around PASs yielded a highly similar profile among various organisms, suggesting the conservation and importance of polyadenylation in evolution. Using APA genes with more than two PASs, gene ontology enrichment revealed genes particularly involved in RNA binding. Reactome pathway analysis showed the enrichment of the innate immune system, especially neutrophil degranulation.


Subject(s)
Ictaluridae/genetics , RNA, Messenger/genetics , Animals , Base Sequence , Polyadenylation , RNA-Seq , Transcriptome
20.
Dev Comp Immunol ; 97: 38-44, 2019 08.
Article in English | MEDLINE | ID: mdl-30905685

ABSTRACT

FOXO proteins are a subgroup of the forkhead family of transcription factors that play crucial roles in lifespan regulation. In addition, FOXO proteins are also involved in immune responses. After a systematic study of FOXO genes in channel catfish, Ictalurus punctatus, seven FOXO genes were identified and characterized, including FOXO1a, FOXO1b, FOXO3a, FOXO3b, FOXO4, FOXO6a and FOXO6b. Through phylogenetic and syntenic analyses, it was found that FOXO1, FOXO3 and FOXO6 were duplicated in the catfish genome, as in the zebrafish genome. Analysis of the relative rates of nonsynonymous (dN) and synonymous (dS) substitutions revealed that the FOXO genes were globally strongly constrained by negative selection. Differential expression patterns were observed in the majority of FOXO genes after Edwardsiella ictaluri and Flavobacterium columnare infections. After E. ictaluri infection, four FOXO genes with orthologs in mammal species were significantly upregulated, where FOXO6b was the most dramatically upregulated. However, after F. columnare infection, the expression levels of almost all FOXO genes were not significantly affected. These results suggested that either a pathogenesis-specific pattern or tissue-specific pattern existed in catfish after these two bacterial infections. Taken together, these findings indicated that FOXO genes may play important roles in immune responses to bacterial infections in catfish.


Subject(s)
Bacterial Infections/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Forkhead Transcription Factors/genetics , Ictaluridae/genetics , Multigene Family , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Edwardsiella ictaluri/immunology , Edwardsiella ictaluri/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/classification , Fish Proteins/immunology , Flavobacterium/immunology , Flavobacterium/physiology , Forkhead Transcription Factors/classification , Forkhead Transcription Factors/immunology , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Ictaluridae/immunology , Ictaluridae/microbiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL