Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 689
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 153(5): 963-75, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706735

ABSTRACT

The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Mice , Models, Biological , Octamer Transcription Factor-3/metabolism , Stomach/cytology
2.
Nature ; 593(7860): 602-606, 2021 05.
Article in English | MEDLINE | ID: mdl-33953397

ABSTRACT

MicroRNAs (miRNAs) have essential functions during embryonic development, and their dysregulation causes cancer1,2. Altered global miRNA abundance is found in different tissues and tumours, which implies that precise control of miRNA dosage is important1,3,4, but the underlying mechanism(s) of this control remain unknown. The protein complex Microprocessor, which comprises one DROSHA and two DGCR8 proteins, is essential for miRNA biogenesis5-7. Here we identify a developmentally regulated miRNA dosage control mechanism that involves alternative transcription initiation (ATI) of DGCR8. ATI occurs downstream of a stem-loop in DGCR8 mRNA to bypass an autoregulatory feedback loop during mouse embryonic stem (mES) cell differentiation. Deletion of the stem-loop causes imbalanced DGCR8:DROSHA protein stoichiometry that drives irreversible Microprocessor aggregation, reduced primary miRNA processing, decreased mature miRNA abundance, and widespread de-repression of lipid metabolic mRNA targets. Although global miRNA dosage control is not essential for mES cells to exit from pluripotency, its dysregulation alters lipid metabolic pathways and interferes with embryonic development by disrupting germ layer specification in vitro and in vivo. This miRNA dosage control mechanism is conserved in humans. Our results identify a promoter switch that balances Microprocessor autoregulation and aggregation to precisely control global miRNA dosage and govern stem cell fate decisions during early embryonic development.


Subject(s)
Gene Dosage , Germ Layers/metabolism , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Animals , Gene Expression Regulation, Developmental , Hep G2 Cells , Humans , K562 Cells , Lipid Metabolism/genetics , Mice , Promoter Regions, Genetic , Transcription Initiation, Genetic
3.
Nature ; 579(7797): 118-122, 2020 03.
Article in English | MEDLINE | ID: mdl-32103178

ABSTRACT

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Epigenesis, Genetic , Healthy Aging/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors, General/metabolism , Aging/genetics , Animals , Caenorhabditis elegans Proteins/genetics , Cognition , Cognitive Dysfunction , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/metabolism , Humans , Longevity/genetics , Lysine/metabolism , Male , Memory , Methylation , Mice , Mitochondria/metabolism , Neurons/metabolism , Proteins/genetics , RNA Interference , Spatial Learning , Transcription Factors, General/deficiency , Transcription Factors, General/genetics
4.
Nature ; 584(7819): 120-124, 2020 08.
Article in English | MEDLINE | ID: mdl-32454512

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19)1-3, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/pharmacology , Betacoronavirus/chemistry , Binding, Competitive , COVID-19 , Cell Line , Chlorocebus aethiops , Crystallization , Crystallography, X-Ray , Female , Humans , In Vitro Techniques , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Load/immunology
5.
Bioessays ; 46(3): e2300189, 2024 03.
Article in English | MEDLINE | ID: mdl-38161234

ABSTRACT

Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8ß1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.


Subject(s)
Embryonic Structures , Glial Cell Line-Derived Neurotrophic Factor , Nephrons/embryology , Ureter , Mice , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Kidney/abnormalities , Kidney/metabolism , Kidney/pathology , Ureter/metabolism , Morphogenesis
7.
Mol Cancer ; 23(1): 23, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38263157

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, and chemoresistance is a major obstacle in its treatment. Despite advances in therapy, the molecular mechanism underlying chemoresistance in CRC is not fully understood. Recent studies have implicated the key roles of long noncoding RNAs (lncRNAs) in the regulation of CRC chemoresistance. METHODS: In this study, we investigated the role of the lncRNA LINC01852 in CRC chemoresistance. LINC01852 expression was evaluated in multiple CRC cohorts using quantitative reverse transcription PCR. We conducted in vitro and in vivo functional experiments using cell culture and mouse models. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of LINC01852 in CRC. RESULTS: Our findings revealed that a lncRNA with tumor-inhibiting properties, LINC01852, was downregulated in CRC and inhibited cell proliferation and chemoresistance both in vitro and in vivo. Further mechanistic investigations revealed that LINC01852 increases TRIM72-mediated ubiquitination and degradation of SRSF5, inhibiting SRSF5-mediated alternative splicing of PKM and thereby decreasing the production of PKM2. Overexpression of LINC01852 induces a metabolic switch from aerobic glycolysis to oxidative phosphorylation, which attenuates the chemoresistance of CRC cells by inhibiting PKM2-mediated glycolysis. CONCLUSIONS: Our results demonstrate that LINC01852 plays an important role in repressing CRC malignancy and chemoresistance by regulating SRSF5-mediated alternative splicing of PKM, and that targeting the LINC01852/TRIM72/SRSF5/PKM2 signaling axis may represent a potential therapeutic strategy for CRC.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Animals , Mice , Humans , Alternative Splicing , Drug Resistance, Neoplasm , Carcinogenesis , Cell Transformation, Neoplastic , Chromatin Immunoprecipitation
8.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37140205

ABSTRACT

Gene loss is a prevalent source of genetic variation in genome evolution. Calling loss events effectively and efficiently is a critical step for systematically characterizing their functional and phylogenetic profiles genome wide. Here, we developed a novel pipeline integrating orthologous inference and genome alignment. Interestingly, we identified 33 gene loss events that give rise to evolutionarily novel long noncoding RNAs (lncRNAs) that show distinct expression features and could be associated with various functions related to growth, development, immunity, and reproduction, suggesting loss relics as a potential source of functional lncRNAs in humans. Our data also demonstrated that the rates of protein gene loss are variable among different lineages with distinct functional biases.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Expression Profiling , Phylogeny , Genome
9.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34849565

ABSTRACT

Gene transcription and protein translation are two key steps of the 'central dogma.' It is still a major challenge to quantitatively deconvolute factors contributing to the coding ability of transcripts in mammals. Here, we propose ribosome calculator (RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome. In addition to effectively predicting the experimentally confirmed coding abundance via sequence and transcription features with high accuracy, RiboCalc provides interpretable parameters with biological information. Large-scale analysis further revealed a number of transcripts with a variety of coding ability for distinct types of cells (i.e. context-dependent coding transcripts), suggesting that, contrary to conventional wisdom, a transcript's coding ability should be modeled as a continuous spectrum with a context-dependent nature.


Subject(s)
Models, Biological , Protein Biosynthesis , RNA , Transcription, Genetic , Animals , Genome, Human , Humans , Mammals/genetics , Mammals/metabolism , RNA/metabolism , RNA, Long Noncoding/genetics , Ribosomes/genetics , Ribosomes/metabolism , Transcription, Genetic/genetics
10.
Plant Physiol ; 192(2): 1378-1395, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36938625

ABSTRACT

Soluble sugar accumulation in fruit ripening determines fleshy fruit quality. However, the molecular mechanism for this process is not yet understood. Here, we showed a transcriptional repressor, CmMYB44 regulates sucrose accumulation and ethylene synthesis in oriental melon (Cucumis. melo var. makuwa Makino) fruit. Overexpressing CmMYB44 suppressed sucrose accumulation and ethylene production. Furthermore, CmMYB44 repressed the transcriptional activation of CmSPS1 (sucrose phosphate synthase 1) and CmACO1 (ACC oxidase 1), two key genes in sucrose and ethylene accumulation, respectively. During the later stages of fruit ripening, the repressive effect of CmMYB44 on CmSPS1 and CmACO1 could be released by overexpressing CmERFI-2 (ethylene response factor I-2) and exogenous ethylene in "HS" fruit (high sucrose accumulation fruit). CmERFI-2 acted upstream of CmMYB44 as a repressor by directly binding the CmMYB44 promoter region, indirectly stimulating the expression level of CmSPS1 and CmACO1. Taken together, we provided a molecular regulatory pathway mediated by CmMYB44, which determines the degree of sucrose and ethylene accumulation in oriental melon fruit and sheds light on transcriptional responses triggered by ethylene sensing that enable the process of fruit ripening.


Subject(s)
Cucurbitaceae , Fruit , Fruit/metabolism , Ethylenes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Sucrose/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Gene Expression Regulation, Plant
11.
J Vasc Surg ; 80(1): 153-162.e4, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460766

ABSTRACT

OBJECTIVE: Selection criteria for carotid duplex ultrasonography screening (DUS) before coronary artery bypass grafting (CABG) is primarily based on limited observational analysis, and the risks associated with carotid artery stenosis (CAS) detected by this approach to preoperative DUS are uncertain. This study aimed to determine the association of carotid DUS with stroke and mortality among patients undergoing CABG. METHODS: Adult patients with coronary artery disease who underwent isolated CABG or CABG with concomitant valvular or congenital procedure were identified. CHA2DS2-VASc score was assessed before CABG, and patients were recorded as high risk if they had a score of 3 or higher. The primary outcomes were stroke and all-cause mortality. Secondary outcomes included ischemic stroke, non-ischemic stroke, transient ischemic attack, and cardiovascular mortality. RESULTS: Among 8958 patients who underwent CABG, 70.9% (n = 6347) received carotid DUS preoperatively (low-risk, 57.3%; high-risk, 42.7%). In the low-risk cohort, there was no significant difference in the risk of stroke (20.7 per 1000 patient-years for CAS vs 13.1 per 1000 patient-years for no CAS; adjusted hazard ratio [aHR], 1.14; 95% confidence interval [CI], 0.78-1.68) or mortality (20.5 per 1000 patient-years for CAS vs 16.8 per 1000 patient-years for no CAS; aHR, 1.33; 95% CI, 0.97-1.83) at 15 years. In the high-risk cohort, CAS was associated with significantly higher risks of stroke at 30 days (433.2 vs 279.5 per 1000 patient-years; aHR, 1.92; 95% CI, 1.00-3.70) and mortality at 15 years (38.4 vs 32.7 per 1000 patient-years; aHR, 1.25; 95% CI, 1.01-1.57) compared with no CAS. CONCLUSIONS: CAS did not impact the incidence of stroke or mortality in the low-risk cohort who underwent CABG. However, in the high-risk cohort, CAS was associated with a significant increase in the risks of 30-day stroke and 15-year mortality, indicating selective carotid DUS is necessarily recommended for these patients.


Subject(s)
Carotid Stenosis , Coronary Artery Bypass , Coronary Artery Disease , Predictive Value of Tests , Stroke , Ultrasonography, Doppler, Duplex , Humans , Male , Female , Coronary Artery Bypass/mortality , Coronary Artery Bypass/adverse effects , Aged , Risk Assessment , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/mortality , Carotid Stenosis/complications , Carotid Stenosis/surgery , Middle Aged , Risk Factors , Retrospective Studies , Stroke/mortality , Stroke/etiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/mortality , Coronary Artery Disease/surgery , Coronary Artery Disease/complications , Treatment Outcome , Time Factors
12.
Mol Pharm ; 21(1): 152-163, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38113058

ABSTRACT

Given that precise/rapid intraoperative tumor margin identification is still challenging, novel fluorescent probes HY and HYM, based on acidic tumor microenvironment (TME) activation and organic anion transporting polypeptide (OATPs)-mediated selective uptake, were constructed and synthesized. Both of them possessed acidic pH-activatable and reversible fluorescence as well as large Stokes shift. Compared with HY, HYM had a higher (over 9-fold) enhancement in fluorescence with pH ranging from 7.6 to 4.0, and the fluorescence quantum yield of HYM (ΦF = 0.49) at pH = 4.0 was 8-fold stronger than that (ΦF = 0.06) at pH = 7.4. Mechanism research demonstrated that acidic TME-induced protonation of the pyridine N atom on ß-carbolines accounted for the pH-sensitive fluorescence by influencing the intramolecular charge transfer (ICT) effect. Furthermore, HYM selectively lit up cancer cells and tumor tissues not only by "off-on" fluorescence but also by OATPs (overexpressed on cancer cells)-mediated cancer cellular internalization, offering dual tumor selectivity for precise visualization of tumor mass and intraoperative guidance upon in situ spraying. Most importantly, HYM enabled rapid and high-contrast (tumor-to-normal tissue ratios > 6) human tumor margin identification in clinical tumor tissues by simple spraying within 6 min, being promising for aiding in clinical surgical resection.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Fluorescent Dyes/chemistry , Neoplasms/diagnostic imaging , Carbolines , Fluorescence , Tumor Microenvironment
13.
Mol Pharm ; 21(7): 3553-3565, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38816926

ABSTRACT

Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of ß-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.


Subject(s)
Apoptosis , Carbolines , Nitriles , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Humans , Carbolines/chemistry , Carbolines/pharmacology , Nitriles/chemistry , Nitriles/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Animals , Mice , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Autophagy/drug effects
14.
Eur J Clin Pharmacol ; 80(3): 409-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158395

ABSTRACT

PURPOSE: 10 mg rivaroxaban is widely used in the Chinese mainland. This study aims to explore the association between 10 mg once daily rivaroxaban and all-cause mortality in patients with nonvalvular atrial fibrillation (NVAF). METHODS: This observational study enrolled 1131 NVAF patients at the cardiovascular department of the First Affiliated Hospital of Xi'an Jiaotong University. One-year outcomes included all-cause mortality and bleeding were recorded. Cox proportional hazards models and Kaplan-Meier analysis were utilized in the study. RESULTS: In total, 1131 patients (402 no anticoagulants, and 729 rivaroxaban) were included. Cox proportional hazard analysis demonstrated that low-dose rivaroxaban (10 mg, HR: 0.14, 95% CI:(0.07-0.28), P<0.001; 15 mg, HR: 0.20, 95% CI:(0.09-0.43), P<0.001; 20 mg, HR: 0.22, 95% CI:(0.05-0.96), P = 0.044) exhibited lower mortality risk compared to untreated patients. CONCLUSIONS: 10 mg once daily rivaroxaban may provide survival benefits for elderly patients with NVAF.


Subject(s)
Atrial Fibrillation , Stroke , Humans , Aged , Rivaroxaban/adverse effects , Stroke/drug therapy , Retrospective Studies , Anticoagulants/adverse effects , Atrial Fibrillation/complications , China , Dabigatran/therapeutic use , Pyridones/adverse effects
15.
Bioorg Chem ; 149: 107474, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805909

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Idiopathic Pulmonary Fibrosis , Phosphodiesterase 4 Inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/therapeutic use , Animals , Structure-Activity Relationship , Mice , Molecular Structure , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Bleomycin , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Male , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis
16.
Environ Res ; 252(Pt 2): 118842, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583656

ABSTRACT

This study investigates the distribution of rare earth elements (REEs) within the Beijing water system, specifically examining the Yongding, Chaobai, Beiyun, Jiyun, and Daqing rivers. Results indicate that the Beiyun River exhibits the highest REE concentrations, ranging from 35.95 to 59.78 µg/mL, while the Daqing River shows the lowest concentrations, ranging from 15.79 to 17.48 µg/mL. LREEs (La to Nd) predominate with a total concentration of 23.501 µg/mL, leading to a notable LREE/HREE ratio of 7.901. Positive Ce anomalies (0.70-1.11) and strong positive Eu anomalies (1.38-2.49) were observed. The study suggests that the Beijing water system's REEs may originate from geological and anthropogenic sources, such as mining and industrial activities in neighboring regions, including Inner Mongolia. These findings underscore the importance of ongoing monitoring and effective water management strategies to address REE-related environmental concerns.


Subject(s)
Environmental Monitoring , Metals, Rare Earth , Rivers , Water Pollutants, Chemical , Metals, Rare Earth/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Beijing , China , Chemical Fractionation
17.
Dig Dis Sci ; 69(4): 1263-1273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451429

ABSTRACT

BACKGROUND: A grim prognosis of pancreatic cancer (PCa) was attributed to the difficulty in early diagnosis of the disease. AIMS: Identifying novel biomarkers for early detection of PCa is thus urgent to improve the overall survival rates of patients. METHODS: The study was performed firstly by identification of candidate microRNAs (miRNAs) in formalin-fixed, paraffin-embedded tissues using microarray profiles, and followed by validation in a serum-based cohort study to assess clinical utility of the candidates. In the cohorts, a total of 1273 participants from four centers were retrospectively recruited as two cohorts including training and validation cohort. The collected serum specimens were analyzed by real-time polymerase chain reaction. RESULTS: We identified 27 miRNAs expressed differentially in PCa tissues as compared to the benign. Of which, the top-four was selected as a panel whose diagnostic efficacy was fully assessed in the serum specimens. The panel exhibited superior to CA19-9, CA125, CEA and CA242 in discriminating patients with early stage PCa from healthy controls or non-PCa including chronic pancreatitis as well as pancreatic cystic neoplasms, with the area under the curves (AUC) of 0.971 (95% CI 0.956-0.987) and 0.924 (95% CI 0.899-0.949), respectively. Moreover, the panel eliminated interference from other digestive tumors with a specificity of 90.2%. CONCLUSIONS: A panel of four serum miRNAs was developed showing remarkably discriminative ability of early stage PCa from either healthy controls or other pancreatic diseases, suggesting it may be developed as a novel, noninvasive approach for early screening of PCa in clinic.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , MicroRNAs/genetics , Retrospective Studies , Cohort Studies , Biomarkers, Tumor , Early Detection of Cancer , Pancreatic Neoplasms/pathology
18.
Mol Ther ; 31(7): 2105-2119, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37073129

ABSTRACT

Poor intratumoral infiltration is the major challenge for chimeric antigen receptor (CAR)-T cell therapy in solid tumors. Hypofractionated radiotherapy (HFRT) has been reported to induce immune cell infiltration and reshape the tumor immune microenvironment. Here, we showed that HFRT (5 × 5 Gy) mediated an early accumulation of intratumoral myeloid-derived suppressor cells (MDSCs) and decreased infiltration of T cells in the tumor microenvironment (TME) of immunocompetent mice bearing triple-negative breast cancer (TNBC) or colon cancer, which was further confirmed in tumors from patients. RNA sequencing (RNA-seq) and cytokine profiling analysis revealed that HFRT induced the activation and proliferation of tumor-infiltrated MDSCs, which was mediated by the interactions of multiple chemokines and chemokine receptors. Further investigation showed that when combined with HFRT, CXCR2 blockade significantly inhibited MDSCs trafficking to tumors and effectively enhanced the intratumoral infiltration and treatment efficacy of CAR-T cells. Our study demonstrates that MDSCs blockade combined with HFRT is promising for CAR-T cell therapy optimization in solid tumors.


Subject(s)
Myeloid-Derived Suppressor Cells , Receptors, Chimeric Antigen , Mice , Animals , Receptors, Chimeric Antigen/genetics , Cell Line, Tumor , Immunotherapy, Adoptive , T-Lymphocytes , Tumor Microenvironment
19.
Article in English | MEDLINE | ID: mdl-38743893

ABSTRACT

Objective: To explore the differential expression of circLRP6 targeted miR-145 in intracranial aneurysms and its regulation of VSMC biological activity, providing a theoretical foundation for the study of intracranial aneurysm regulation by circLRP6. Methods: Expression levels of circLRP6 and miR-145 mRNA were measured in intracranial aneurysms and superficial temporal arteries. In vitro experiments were conducted using TNF-αstimulated HBVSMCs to evaluate the expression of circLRP6 and miR-145, as well as cell proliferation, apoptosis, migration, and related protein expression. Results: CircLRP6 was low expressed in intracranial aneurysms, and MiR-145 showed a trend of Overexpression; With the increase of circLRP6 expression in intracranial aneurysms, expression of miR-145 decreased. The correlation coefficient, r, was -0.5139; After TNF- α following stimulation, phenotype of VSMCs changed, expression of circLRP6 in cells decreased, and expression of miR-145 increased; CircLRP was successfully overexpressed or knocked out in VSMCs cells; Overexpression of circLRP6 can inhibit concentration expression of miR-145; VSMCs cells showed an increasing trend with time. Overexpression of circLRP6 can inhibit the proliferation process of VSMCs cells, The proliferation activity of cells was enhanced after circLRP6 knockout, and Overexpression of miR-145 could enhance the proliferation activity of VSMCs; Overexpression of circLRP6 could promote apoptosis process of VSMCs, while knockout of circLRP6 and Overexpression of miR-145 could inhibit apoptosis ability of VSMCs; Overexpression of circLRP6 can inhibit migration ability of VSMCs cells. Overexpression of circLRP6 after knockout and miR-145 can enhance the migration ability of cells; After circLRP6 overexpression in VSMCs, α-SMA, SM22α And expression concentration of Calponin protein increased, IL-1ß. The concentration and expression of MMP-2 and MMP-9 protein decreased After knockout of circLRP6 and Overexpression of miR-145, α-SMA, SM22α, And expression concentration of Calponin protein decreased, IL-1ß. The expression of MMP-2 and MMP-9 protein increased (P < .05). Conclusion: CircLRP6 is low expressed in intracranial aneurysms and negatively correlates with miR-145 expression. CircLRP6 may be involved in the development of intracranial aneurysms by influencing VSMC phenotype transformation. CircLRP6 acts as a natural sponge for miR-145, regulating VSMC proliferation, migration, and differentiation and promoting apoptosis, ultimately inhibiting the development of intracranial aneurysms. This study provides a theoretical basis for clinical research on the mechanism of intracranial aneurysms.

20.
J Appl Clin Med Phys ; 25(4): e14244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146796

ABSTRACT

OBJECTIVES: To develop radiomics models based on automatic segmentation of the pretreatment apparent diffusion coefficient (ADC) maps for predicting the biochemical recurrence (BCR) of advanced prostate cancer (PCa). METHODS: A total of 100 cases with pathologically confirmed PCa were retrospectively included in this study. These cases were randomly divided into training (n = 70) and test (n = 30) datasets. Two predictive models were constructed based on the combination of age, prostate specific antigen (PSA) level, Gleason score, and clinical staging before therapy and the prostate area (Model_1) or PCa area (Model_2). Another two predictive models were constructed based on only prostate area (Model_3) or PCa area (Model_4). The area under the receiver operating characteristic curve (ROC AUC) and precision-recall (PR) curve analysis were used to analyze the models' performance. RESULTS: Sixty-five patients without BCR (BCR-) and 35 patients with BCR (BCR+) were confirmed. The age, PSA, volume, diameter and ADC value of the prostate and PCa were not significantly different between the BCR- and BCR+ groups or between the training and test datasets (all p > 0.05). The AUCs were 0.637 (95% CI: 0.434-0.838), 0.841 (95% CI: 0.695-0.940), 0.840 (95% CI: 0.698-0.983), and 0.808 (95% CI: 0.627-0.988) for Model_1 to Model_4 in the test dataset without significant difference. The 95% bootstrap confidence intervals for the areas under the PR curve of the four models were not statistically different. CONCLUSION: The radiomics models based on automatically segmented prostate and PCa areas on the pretreatment ADC maps developed in our study can be promising in predicting BCR of advanced PCa.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Radiomics , Prostatic Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL