Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(1): 201-209, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134356

ABSTRACT

Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.

2.
Angew Chem Int Ed Engl ; 63(23): e202405514, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38584585

ABSTRACT

Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.

3.
Angew Chem Int Ed Engl ; : e202409948, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949953

ABSTRACT

As a remote and non-contact stimulus, light offers the potential for manipulating the polarization of ferroelectric materials without physical contact. However, in current research, the non-contact write-read (erase) process lacks direct observation through the stable current as output signal. To address this limitation, we investigated the photoinduced polarization switching capabilities of the cyanide-bridged compound [Fe2Co] using visible light, leading to the achievement of rewritable polarization. By subjecting [Fe2Co] crystals to alternating irradiation with 785 nm and 532 nm light, the polarization changes exhibited a distinct square wave pattern, confirming the reliability of the writing and erasing processes. Initialization involved exposing specific crystal units to 532 nm light for storing "1" or "0" information, while reading was accomplished by scanning the units with 785 nm light, resulting in brief current pulses for "1" states and no current signal for "0" states. This research unveils new possibilities for optical storage systems, paving the way for efficient and rewritable data storage and retrieval technologies, such as the next-generation memories.

4.
Inorg Chem ; 62(23): 8778-8783, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37255342

ABSTRACT

In the past two decades, numerous molecular ferroelectrics have been reported. However, metal-free molecular ferroelectrics with high working temperatures and large spontaneous polarizations are still uncommon. Herein, we present two metal-free molecular ferroelectrics prepared from monoprotonated hexamethylenetetramine (HMTA), namely (HMTAH)Cl and (HMTAH)Br, which crystallize in a polar point group of 3m. In these crystals, the polar HMTAH+ organic cations can be reoriented 180° along the polar axis because of the quasispherical molecular geometry. As a result of the large shift of the positively charged protonated N atoms, these compounds demonstrate large spontaneous polarizations with values of 8.3 and 8.1 µC cm-2 and high working temperatures of 390 and 435 K, respectively. The ferroelectric property of these compounds is characterized with second-harmonic generation, ferroelectric hysteresis loop, and pyroelectric current measurements.

5.
Angew Chem Int Ed Engl ; 61(39): e202208771, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35906869

ABSTRACT

Using light as a local heat source to induce a temporary pyroelectric current is widely recognized as an effective way to control the polarization of crystalline materials. In contrast, harnessing light directly to modulate the polarization of a crystal via excitation of the electronic bands remains less explored. In this study, we report an FeII spin crossover crystal that exhibits photoinduced macroscopic polarization change upon excitation by green light. When the excited crystal relaxes to the ground state, the corresponding pyroelectric current can be detected. An analysis of the structures, magnetic properties and the Mössbauer and infrared spectra of the complex, supported by calculations, revealed that the polarization change is dictated by the directional relative movement of ions during the spin transition process. The spin transition and polarization change occur simultaneously in response to light stimulus, which demonstrates the enormous potential of polar spin crossover systems in the field of optoelectronic materials.

6.
Dalton Trans ; 53(21): 8905-8909, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757356

ABSTRACT

A single crystal composed of one-dimensional coordinated polymers, [CdCl2(1-methyl-2-pyridone)]n, has been synthesized and characterized. This compound exhibits outstanding elastic bending due to the molecular spring nature of the CdCl2 coordination framework and weak intermolecular interactions between the coordination chains. Owing to the helical arrangement of organic ligands surrounding the coordination structure, the compound crystallizes in a chiral space group. As a result, it displays compelling circular dichroism spectra and second harmonic generation properties.

7.
Dalton Trans ; 51(17): 6809-6816, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35437553

ABSTRACT

A series of dynamic single crystals with a chemical formula of [MII(en)3]SO4 (en = ethylene and MII = NiII, MnII, and CdII) was synthesized. As the temperature decreases, these materials exhibit dielectric switching in the vicinity of the phase transition point accompanied by anisotropic thermal expansion in the cell parameters as a consequence of the order-disorder structural change of SO2-4 in a cavity surrounded by five [MII(en)3]2+ complex cations. Because the variation of metal centers with different ionic radii changes the shape of the complex cation, which affects the distribution of hydrogen-bond interactions around the SO2-4, the dynamic motion of SO2-4 is substantially tuned. Correspondingly, the dielectric properties and anisotropic thermal expansion of materials were largely shifted, especially in the single crystals of [MnII(en)3]SO4, whose structural change is distinctly different from the crystals of Ni(II) and Cd(II). The detailed structural mechanism accounting for the different physical properties of these materials was discussed.

8.
J Phys Chem Lett ; 10(21): 6650-6655, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31602977

ABSTRACT

We obtained one new molecular ferroelectric material tris(2-hydroxyethyl) ammonium bromide (TAB) that crystallizes in aqueous solution at room temperature with a space group of R3m which belongs to ten polar space groups. There is a paraelectric-to-ferroelectric phase transition at 424 K (from hexagonal R3̅m to hexagonal R3m phase). Such a high transition temperature is close to that of diisopropylamine bromide (426 K) and higher than that of many other molecular ferroelectrics, such as triethylmethylammonium tetrabromoferrate(III) (360 K); some of the organic-inorganic perovskite ferroelectrics, such as (cyclohexylammonium)2PbBr4 (363 K); and some inorganic ferroelectrics, including BaTiO3 (393 K). The saturated polarization and the coercive field of TAB measured from the ferroelectric hysteresis loop are about 0.54 µC·cm-2 and 0.62 kV/cm, respectively. Given its superior performance, including high phase transition temperature, room-temperature ferroelectricity, small coercive electric field, and adjustable ladder-shaped dielectric constant, TAB will have many potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL