Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Am Chem Soc ; 146(28): 19108-19117, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38847788

ABSTRACT

Previous findings have suggested a close association between oxygen vacancies in SnO2 and charge carrier recombination as well as perovskite decomposition at the perovskite/SnO2 interface. Underlying the fundamental mechanism holds great significance in achieving a more favorable balance between the efficiency and stability. In this study, we prepared three SnO2 samples with different oxygen vacancy concentrations and observed that a low oxygen vacancy concentration is conducive to long-term device stability. Iodide ions were observed to easily diffuse into regions with high oxygen vacancies, thereby speeding up the deprotonation of FAI, as made evident by the detection of the decomposition product formamide. In contrast, a high oxygen vacancy concentration in SnO2 could prevent hole injection, leading to a decrease in interfacial recombination losses. To suppress this decomposition reaction and address the trade-off, we designed a bilayer SnO2 structure to ensure highly efficient carrier transport still while maintaining a chemically inert surface. As a result, an enhanced efficiency of 25.06% (certified at 24.55% with an active area of 0.09 cm2 under fast scan) was achieved, and the extended operational stability maintained 90% of their original efficiency (24.52%) after continuous operation for nearly 2000 h. Additionally, perovskite submodules with an active area of 14 cm2 were successfully assembled with a PCE of up to 22.96% (20.09% with an aperture area).

2.
Small ; 20(29): e2310352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38368257

ABSTRACT

Extensive research has focused on developing wide-bandgap metal compound-based passivating contacts as alternatives to conventional doped-silicon-layer-based passivating contacts to mitigate parasitic absorption losses in crystalline silicon (c-Si) solar cells. Herein, thermally-evaporated aluminum halides (AlX)-based electron-selective passivating contacts for c-Si solar cells are investigated. A low contact resistivity of 60.5 and 38.4 mΩ cm2 is obtained on the AlClx/n-type c-Si (n-Si) and AlFx/n-Si heterocontacts, respectively, thanks to the low work function of AlX. Power conversion efficiencies (PCEs) of 19.1% and 19.6% are achieved on proof-of-concept n-Si solar cells featuring a full-area AlClx/Al and AlFx/Al passivating contact, respectively. By further implementing an ultrathin SiO2 passivation interlayer and a pre-annealing treatment, the electron selectivity (especially the surface passivation) of AlX is significantly enhanced. Accordingly, a remarkable PCE of 21% is achieved on n-Si solar cells featuring a full-area SiO2/AlFx/Al rear contact. AlFx-based electron-selective passivating contacts exhibit good thermal stability up to ≈400 °C and better long-term environmental stability. This work demonstrates the potential of AlFx-based electron-selective passivating contact for solar cells.

3.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38391210

ABSTRACT

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Subject(s)
Nostoc , Ultraviolet Rays , Humans , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Nostoc/metabolism , Photosynthesis/physiology
4.
J Org Chem ; 89(12): 8468-8477, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38856238

ABSTRACT

Aromatic sulfones are the prevailing scaffolds in pharmaceutical and material sciences. However, compared to their widespread application, the selective deuterium labeling of these structures is restricted due to their electron-deficient properties. This study presents two comprehensive strategies for the deuteration of aromatic sulfones. The base-promoted deuteration uses DMSO-d6 as the deuterium source, resulting in a rapid H/D exchange within 2 h. Meanwhile, a silver-catalyzed protocol offers a much milder option by using economical D2O to furnish the labeled sulfones.

5.
J Nat Prod ; 87(4): 893-905, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38417166

ABSTRACT

The bridged polycyclic sesquiterpenoids derived from sativene, isosativene, and longifolene have unique structures, and many chemical synthesis approaches with at least 10 steps have been reported. However, their biosynthetic pathway remains undescribed. A minimal biosynthetic gene cluster (BGC), named bip, encoding a sesquiterpene cyclase (BipA) and a cytochrome P450 (BipB) is characterized to produce such complex sesquiterpenoids with multiple carbon skeletons based on enzymatic assays, heterologous expression, and precursor experiments. BipA is demonstrated as a versatile cyclase with (-)-sativene as the dominant product and (-)-isosativene and (-)-longifolene as minor ones. BipB is capable of hydroxylating different enantiomeric sesquiterpenes, such as (-)-longifolene and (+)-longifolene, at C-15 and C-14 in turn. The C-15- or both C-15- and C-14-hydroxylated products are then further oxidized by unclustered oxidases, resulting in a structurally diverse array of sesquiterpenoids. Bioinformatic analysis reveals the BipB homologues as a discrete clade of fungal sesquiterpene P450s. These findings elucidate the concise and divergent biosynthesis of such intricate bridged polycyclic sesquiterpenoids, offer valuable biocatalysts for biotransformation, and highlight the distinct biosynthetic strategy employed by nature compared to chemical synthesis.


Subject(s)
Cytochrome P-450 Enzyme System , Multigene Family , Molecular Structure , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Biosynthetic Pathways/genetics , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/metabolism , Stereoisomerism
6.
Bioorg Chem ; 151: 107619, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39024806

ABSTRACT

Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.

7.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786596

ABSTRACT

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Subject(s)
Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
8.
Chem Biodivers ; : e202401460, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152549

ABSTRACT

Cardenolides are a class of steroidal glycoside compounds that are mainly distributed in plants, have significant physiological activity in the heart, and have been used clinically for over 200 years. To provide a reference for further research and development of these compounds, the phytochemical and biological properties of natural cardenolides (295 compounds in total) isolated between 2010 and 2023 from 17 families and hundreds of species belonging to 70-80 genera were reviewed. In vitro and in vivo studies have indicated that antitumor, antibacterial, and antiviral activities are the most commonly reported pharmacological properties of cardenolides. Antitumor activities have been thoroughly studied to understand their structure-activity relationships, revealing numerous potential anticancer molecules that lay the theoretical foundation for further development of traditional Chinese medicinal herbs and the creation of new drugs.

9.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
10.
Compr Rev Food Sci Food Saf ; 23(1): e13269, 2024 01.
Article in English | MEDLINE | ID: mdl-38284590

ABSTRACT

Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.


Subject(s)
Maillard Reaction , Plant Proteins , Animals , Food
11.
Compr Rev Food Sci Food Saf ; 23(1): e13291, 2024 01.
Article in English | MEDLINE | ID: mdl-38284592

ABSTRACT

Fruit and vegetable processing can effectively maintain the quality and safety of fruit and vegetable-based products while extending the shelf life of products and saving transportation costs. Infrared (IR) technology has been widely used in many operating units of fruit and vegetable processing because of its versatility of uniform heating, high heat transfer efficiency, and minimized damage to fruit and vegetable tissues. Catalytic IR (CIR), compared to traditional electric IR, is powered by natural gas or liquefied gas, which can improve thermal efficiency while significantly saving energy. However, there is no comprehensive overview discussing and summarizing the utilization and application of the CIR technology in fruit and vegetable processing. Therefore, this review aims to highlight recent advances in the application of CIR technology in fruit and vegetable processing. Specifically, a comprehensive discussion of the physicochemical properties and underlying mechanisms of CIR is provided, and its applications as a single method or in combination with other technologies in fruit and vegetable processes, such as blanching, peeling, microbial population reduction, and drying, are also presented. Besides, the currently used laboratory and pilot-scale equipment of CIR has also been summarized.


Subject(s)
Fruit , Vegetables , Vegetables/chemistry , Fruit/chemistry , Hot Temperature , Quality Control
12.
Saudi Pharm J ; 32(9): 102139, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39139718

ABSTRACT

Lung cancer ranks as the 2nd most common cancer globally. It's the most prevalent cancer in men and the 2nd most common in women. The prominent events in EGFR-mutated non-small-cell lung cancer (NSCLC) include the emergence of the L858R mutation within EGFR exon 21. Despite the promising efficacy of EGFR inhibitors in managing lung cancer, the development of acquired resistance poses a significant hurdle. In the current investigation, we focused on the screening of two phytochemicals, namely Dehydrocostus lactone and Mokkolactone, derived from the Saussurea lappa plant, as potential inhibitors targeting EGFR L858R mutant lung cancer. The chloroform and ethanol extract of the plant demonstrated anti-proliferative activity through the Resazurin chemosensitivity assay, exhibiting an IC50 value of 37.90 ± 0.29 µg/ml with selectivity index 2.4. Through a GC-MS study, we identified 11 phytochemicals for further insilico analysis. These compounds underwent ADMET assessment followed by drug likeliness analysis before being subjected to molecular docking against EGFR L858R, identified through protein-protein interaction network analysis. All phytochemicals exhibited binding energy scores ranging from -6.9 to -8.1 kcal/mol. Dehydrocostus lactone and Mokkolactone were specifically identified for their binding profile. Findings from 100 ns molecular dynamics simulations demonstrated their enhanced stability compared to the reference ligand DJK. This was evident in the root mean square deviation (RMSD) values, ranging from 0.23 ± 0.01 nm to 0.30 ± 0.05 nm, the radius of gyration values, from 1.71 ± 0.01 nm to 1.72 ± 0.01 nm, and the solvent accessible surface area values, from 155.39 ± 2.40 nm2 to 159.32 ± 2.14 nm2. Additionally, favourable characteristics were observed in terms of hydrogen bonding, principal component analysis, and free energy landscape analysis. Examination of their electronic structure via density functional theory revealed efficient properties, with the highest occupied molecular orbital-least unoccupied molecular orbital energy gap values ranging from -3.984 eV to -6.547 eV. Further, in vivo analysis is required to gain a more comprehensive understanding and efficacy of these identified phytochemicals against lung cancer.

13.
Heliyon ; 10(7): e28112, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586392

ABSTRACT

The Long Short-Term Memory neural network is a specialized architecture designed for handling time series data, extensively applied in the field of predicting gas concentrations. In the harsh conditions prevalent in coal mines, the time series data of gas concentrations collected by sensors are susceptible to noise interference. Directly inputting such noisy data into a neural network for training would significantly reduce predictive accuracy and lead to deviations from the actual values. The Empirical Mode Decomposition method, commonly employed in gas concentration prediction, faces challenges in practical engineering applications due to the substantial influence of newly acquired data on the initial decomposition subsequence values. Consequently, it is difficult to use this method as intended. Conversely, the Wavelet Threshold Denoising method does not encounter this issue. Furthermore, gas concentration sequences exhibit chaotic characteristics. Performing phase space reconstruction allows for the extraction of additional valuable hidden information. In light of these factors, a prediction model is proposed, integrating WTD, Phase Space Reconstruction, and LSTM neural networks. Initially, the gas concentration sequence itself is subjected to wavelet threshold denoising. Subsequently, phase space reconstruction is performed, and the resulting reconstructed phase space matrix serves as the input for the LSTM neural network. The outcomes from the final LSTM neural network reveal that the PS method indeed extracts more valuable information. The Mean Absolute Error and Root Mean Square Error are reduced by 35.1% and 25%, respectively. Additionally, when compared to the PS-LSTM model without utilizing the WTD method, the WTD-PS-LSTM predictive model showcases reductions of 77.1% and 80% in MAE and RMSE, respectively. Compared with the LSTM model, the MAE and RMSE of the WTD-PS-LSTM prediction model were reduced by 81.4% and 82.6%, respectively. This greatly improves the credibility of whether or not a response related to coal mine safety management is implemented.

14.
Heliyon ; 10(12): e33277, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021997

ABSTRACT

Background: Cervical cancer is among the most prevalent malignancies worldwide. This study explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it develops a diagnostic model based on angiogenesis-related differentially expressed genes (ARDEGs). Methods: We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diagnostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy responses in cervical cancer. Results: A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the model were associated with clinicopathological features, prognosis, and immune cell infiltration. Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell activation) were highly correlated. Conclusion: This study identifies the prognostic characteristics of ARGs in cervical cancer patients, elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.

15.
Iran J Basic Med Sci ; 27(7): 813-824, 2024.
Article in English | MEDLINE | ID: mdl-38800011

ABSTRACT

Objectives: Cervical cancer (CC) is the most common gynecological malignant tumor and the fourth leading cause of cancer-related death in women. The progression of CC is significantly affected by autophagy. Our objective was to use bioinformatics analysis to explore the expression, prognostic significance, and immune infiltration of autophagy-related genes in CC. Materials and Methods: We identified a set of autophagy-related differentially expressed genes (ARDEGs) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ARDEGs were further validated by The Human Protein Atlas (HPA), GSE52903, and GSE39001 dataset. Hub genes were found by the STRING network and Cytoscape. We performed Gene Set Enrichment Analysis (GSEA), Gene ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis to further understand the functions of the hub genes. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used to check the hub genes. Results: A total of 10 up-regulated (CXCR4, BAX, SPHK1, EIF2AK2, TBK1, TNFSF10, ITGB4, CDKN2A, IL24, and BIRC5) and 19 down-regulated (PINK1, ATG16L2, ATG4D, IKBKE, MLST8, MAPK3, ERBB2, ULK3, TP53INP2, MTMR14, BNIP3, FOS, CCL2, FAS, CAPNS1, HSPB8, PTK6, FKBP1B , and DNAJB1) ARDEGs were identified. The ARDEGs were enriched in cell growth, apoptosis, human papillomavirus infection, and cytokine-mediated. Then, we found that low expression of MAPK3 was associated with poor prognosis in CC patients and was significantly enriched in immune pathways. In addition, the expression of MAPK3 was significantly positively correlated with the infiltration levels of macrophages, B cells, mast cell activation, and cancer-associated fibroblasts. Furthermore, MAPK3 was positively correlated with LGALS9, and negatively correlated with CTLA4 and CD40. Conclusion: Our results show that MAPK3 can be used as a new prognostic biomarker to predict the prognosis of patients with CC.

16.
Heliyon ; 10(15): e35085, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170187

ABSTRACT

The series-parallel hybrid system has attracted much attention from scholars for its effective integration of the power advantages and operating characteristics of different power sources, which is influenced by international emission regulations, energy-saving and emission reduction policies. As such, a series-parallel hybrid powertrain is introduced to the amphibious vehicle, and an innovative powertrain topology architecture is proposed. Meanwhile, the operation mode and energy efficiency characteristics are investigated during the working process. Firstly, the energy flow simulation model of a series-parallel gas-electric hybrid propulsion system is constructed using a modular modeling approach. Secondly, four operating modes, namely mechanical propulsion, electric propulsion, hybrid propulsion and charging mode, were formulated due to the fact that the propulsion system has multiple forms of power sources in the form of natural gas engine and reversible motor. Meanwhile, the energy flow states were investigated under different operating modes. Meanwhile, a comprehensive investigation of the energy efficiency associated with propulsion, storage and start-up energy was conducted for each specific mode. The results of the research indicated that the energy efficiency of the electric propulsion mode can reach up to 35.15 %, which is the gain from the wide operating range of the motor's high efficiency. The hybrid propulsion mode can obtain the highest energy efficiency of 35.88 %, which fully demonstrates the advantages of coordinating and complementing the two power sources, the natural gas engine and the reversible electric motor. This investigation also provides theoretical and empirical support for optimizing energy matching and formulating energy management strategies.

17.
Trends Mol Med ; 30(2): 113-116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123379

ABSTRACT

Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is an autosomal recessive disorder arising from biallelic F-box and leucine-rich repeat (LRR) protein 4 (FBXL4) gene mutations. Recent advances have shown that excessive BCL2 interacting protein 3 (BNIP3)/ BCL2 interacting protein 3 like (BNIP3L)-dependent mitophagy underlies the molecular pathogenesis of MTDPS13. Here, we provide an overview of these groundbreaking findings and discuss potential therapeutic strategies for this fatal disease.


Subject(s)
Mitochondrial Encephalomyopathies , Mitophagy , Humans , Mitophagy/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Mutation , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Encephalomyopathies/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
18.
Adv Colloid Interface Sci ; 324: 103074, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181662

ABSTRACT

Currently, there is an increasing focus on comprehending the solubility of plant-based proteins, driven by the rising demand for animal-free food formulations. The solubility of proteins plays a crucial role in impacting other functional properties of proteins and food processing. Consequently, understanding protein solubility in a deeper sense may allow a better usage of plant proteins. Herein, we discussed the definition of protein solubility from both thermodynamic and colloidal perspectives. A range of factors affecting solubility of plant proteins are generalized, including intrinsic factors (amino acids composition, hydrophobicity), and extrinsic factors (pH, ionic strength, extraction and drying methods). Current methods to enhance solubility are outlined, including microwave, high intensity ultrasound, hydrostatic pressure, glycation, pH-shifting, enzymatic hydrolysis, enzymatic cross-linking, complexation and modulation of amino acids. We base the discussion on diverse modified methods of nitrogen solubility index available to determine and analyze protein solubility followed by addressing how other indigenous components affect the solubility of plant proteins. Some nonproteinaceous constituents in proteins such as carbohydrates and polyphenols may exert positive or negative impact on protein solubility. Appropriate protein extraction and modification methods that meet consumer and manufacturers requirements concerning nutritious and eco-friendly foods with lower cost should be investigated and further explored.


Subject(s)
Food , Plant Proteins , Plant Proteins/chemistry , Solubility , Hydrolysis , Amino Acids
19.
Autophagy ; : 1-3, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909316

ABSTRACT

Mutations in the DDHD2 (DDHD domain containing 2) gene cause autosomal recessive spastic paraplegia type 54 (SPG54), a rare neurodegenerative disorder characterized by the early childhood onset of progressive spastic paraplegia. DDHD2 is reported as the principal brain triacylglycerol (TAG) lipase whose dysfunction causes massive lipid droplet (LD) accumulation in the brains of SPG54 patients. However, the precise functions of DDHD2 in regulating LD catabolism are not yet fully understood. In a recent study, we demonstrate that DDHD2 interacts with multiple members of the Atg8-family proteins (MAP1LC3/LC3s, GABARAPs), which play crucial roles in lipophagy. DDHD2 possesses two LC3-interacting region (LIR) motifs that contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a compound that tethers LC3 to LDs to enhance their macroautophagic/autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide insights into the dual functions of DDHD2 as a TAG lipase and cargo receptor for lipophagy in neuronal LD catabolism, and also suggest a potential therapeutic approach for treating SPG54 patients.

20.
Heliyon ; 10(11): e32090, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933933

ABSTRACT

As a paradigm shift in tandem with the expansion of ICT, smart electronic health systems hold great promise for enhancing healthcare delivery and illness prevention efforts. These systems acquire an in-depth understanding of patient health states through the real-time collection and analysis of medical data enabled by the Internet of Things (IoT) and machine learning. With the widespread use of cutting-edge artificial intelligence and machine learning techniques, predictive analytics in medicine can assist in making the shift from a reactive to a proactive healthcare strategy. With the ability to rapidly and precisely evaluate massive amounts of data, draw intelligent conclusions, and solve difficult issues, artificial neural networks could revolutionize several industries. Two cardiac illnesses were assessed in this study using a multilayer perceptron artificial neural network that incorporated a genetic algorithm and an error-back propagation mechanism. The ability of artificial neural networks to handle consecutive time series data is crucial for optimizing resources in smart electronic health systems, especially with the increasing volume of patient information and the broad use of electronic clinical records. This requires the creation of more accurate predictive models. Through the use of Internet of Things (IoT) sensors, the proposed system gathers data, which is then used to do predictive analytics on patient history-related electronic clinical data saved in the cloud. A smart healthcare system that uses Mu-LTM (multidirectional long-term memory) to accurately monitor and predict the risk of heart disease has a coverage error of 97.94 %, an accuracy of 97.89 %, a sensitivity of 97.96 %, and a specificity of 97.99 %. In comparison to other smart heart disease prediction systems, the F1-score of 97.95 % and precision of 97.71 % is very good.

SELECTION OF CITATIONS
SEARCH DETAIL